【題目】已知橢圓的長軸為,分別為橢圓C的左、右頂點,P是橢圓C上異于的動點,且面積的最大值為.
(1)求橢圓C的方程;
(2)過點的直線l交橢圓C于兩點,D為橢圓上一點,O為坐標(biāo)原點,且滿足,其中,求直線l的斜率k的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ當(dāng)時,取得極值,求的值并判斷是極大值點還是極小值點;
Ⅱ當(dāng)函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,d∈R,矩陣A= 的逆矩陣A-1=.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y=2x+1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)圖象上的所有點的橫坐標(biāo)伸長到原來的2倍,再把所得各點向右平移個單位長度,最后把所得各點縱坐標(biāo)擴(kuò)大到原來的2倍,就得到函數(shù)f(x)的圖象,則下列說法中正確的個數(shù)是( )
①函數(shù)f(x)的最小正周期為2π;
②函數(shù)f(x)的最大值為2;
③函數(shù)f(x)圖象的對稱軸方程為;
④設(shè)x1,x2為方程的兩個不相等的根,則的最小值為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P—ABC中,PB平面ABC,ABBC,AB=PB=2,BC=2,E、G分別為PC、PA的中點.
(1)求證:平面BCG平面PAC;
(2)假設(shè)在線段AC上存在一點N,使PNBE,求的值;
(3)在(2)的條件下,求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y,z均為正數(shù).
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若=,求2xy2yz2xz的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點.
(1)當(dāng)時,求M點的極坐標(biāo);
(2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運動的時長,隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運動的總時長(單位:小時),按照共6組進(jìn)行統(tǒng)計,得到男生、女生每周運動的時長的統(tǒng)計如下(表1、2),規(guī)定每周運動15小時以上(含15小時)的稱為“運動合格者”,其中每周運動25小時以上(含25小時)的稱為“運動達(dá)人”.
表1:男生
時長 | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時長 | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運動時長不小于20小時的男生中隨機(jī)選取2人,求選到“運動達(dá)人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運動合格者”與性別有關(guān).
每周運動的時長小于15小時 | 每周運動的時長不小于15小時 | 總計 | |
男生 | |||
女生 | |||
總計 | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com