【題目】如圖放置的邊長為1的正方形 沿 軸滾動(向右為順時針,向左為逆時針).設(shè)頂點 的軌跡方程是,則關(guān)于的最小正周期在其兩個相鄰零點間的圖像與x軸所圍區(qū)域的面積S的正確結(jié)論是( )

A. B.

C. D.

【答案】A

【解析】

從某一個頂點(比如落在軸上的時候開始計算到下一次點落在軸上,這個過程中四個頂點依次落在了軸上而每兩個頂點間距離為正方形的邊長,因此該函數(shù)的周期為.下面考查點的運動軌跡,不妨考查正方形向右滾動, 點從軸上開始運動的時候,首先是圍繞點運動個圓,該圓半徑為,然后以點為中心,滾動到點落地,其間是以為半徑旋轉(zhuǎn),再以為圓心,旋轉(zhuǎn),這時候以為半徑,因此最終構(gòu)成圖象如下:

所以兩個相鄰零點間的圖象與軸所圍成區(qū)域的面積,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求證:;

2)若上恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD中,∠BAD=60°ACBD相交于點O.將△ABD沿BD折起,使頂點A至點M,在折起的過程中,下列結(jié)論正確的是(

A.BDCM

B.存在一個位置,使△CDM為等邊三角形

C.DMBC不可能垂直

D.直線DM與平面BCD所成的角的最大值為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點的五面體中,面是邊長為3的菱形.

(1)求證:

(2)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E的焦點為F,過F的直線lE交于A,B兩點,與x軸交于點.A為線段的中點,則

A.9B.12C.18D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為矩形,且平面平面,,,,點是線段上的一點,且

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著計算機的出現(xiàn),圖標被賦予了新的含義,又有了新的用武之地.在計算機應(yīng)用領(lǐng)域,圖標成了具有明確指代含義的計算機圖形.如圖所示的圖標是一種被稱之為“黑白太陽”的圖標,該圖標共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個“黑白太陽”圖標中隨機取一點,則此點取自圖標第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的焦距為2,且過點.

1)求橢圓的方程;

2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于兩點,問是否存在直線,使得的垂心,若存在,求出直線的方程:若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案