【題目】已知點(diǎn)A(sin 2x,1),B,設(shè)函數(shù)f(x)=(xR),其中O為坐標(biāo)原點(diǎn).

(1)求函數(shù)f(x)的最小正周期;

(2)當(dāng)x時(shí),求函數(shù)f(x)的最大值與最小值;

(3)求函數(shù)f(x)的單調(diào)減區(qū)間.

【答案】(1)T=π;(2)最大值和最小值分別為1和-;(3),k∈Z.

【解析】

(1)由條件利用兩個(gè)向量的數(shù)量積的公式,三角恒等變換求得f(x)的解析式,再利用正弦函數(shù)的周期性求得函數(shù)f(x)的最小正周期;(2)當(dāng)x∈[0,]時(shí),利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)的最大值與最小值;(3)由條件利用正弦函數(shù)的減區(qū)間求得函數(shù)f(x)的單調(diào)減區(qū)間.

(1)∵A(sin 2x,1),B,

=(sin 2x,1),

,

∴f(x)==sin 2x+cos

=sin 2x+cos 2xcos -sin 2xsin

=sin 2x+cos 2x

=sin 2xcos +cos 2xsin

=sin.

f(x)的最小正周期T==π.

(2)∵0≤x≤,

≤2x+,

∴-≤sin≤1,

∴f(x)的最大值和最小值分別為1和-.

(3)由+2kπ≤2x++2kπ,k∈Z+kπ≤x≤+kπ,k∈Z,

∴f(x)的單調(diào)減區(qū)間是,k∈Z.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在實(shí)數(shù)集上的函數(shù)f(x)=x2+ax(a為常數(shù)),g(x)= x3﹣bx+m(b為常數(shù)),若函數(shù)f(x)在x=1處的切線斜率為3,x= 是g(x)的一個(gè)極值點(diǎn)
(1)求a,b的值;
(2)若存在x∈[﹣4,4]使得f(x)≥g(x)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,在處的切線方程為.

(1)求 ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以

,所以,

,則,與矛盾,故 .

(2)由(1)可知, ,

,可得,

,

,

當(dāng)時(shí), 單調(diào)遞減,且

當(dāng)時(shí), , 單調(diào)遞增;且,

所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,

.

【點(diǎn)睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一同學(xué)在電腦中打出若干個(gè)圈:○●○○●○○○●○○○○●○○○○○●若將此若干個(gè)圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個(gè)圈中的●的個(gè)數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β,cos β=-,sin(α+β)=.

(1)tan 2β的值;

(2)α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記函數(shù)的定義域?yàn)?/span>, )的定義域?yàn)?/span>.

(1)求;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

列聯(lián)表算得參照附表,得到的正確結(jié)論是(  ).

A. 在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

B. 在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

C. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2.
(I)求a、b的值;
(Ⅱ)當(dāng)x>1時(shí),不等式f(x)> 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案