11.關(guān)于x的實(shí)系數(shù)一元二次方程x2+px+2=0的兩個(gè)虛數(shù)根為z1、z2,若z1、z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)是經(jīng)過(guò)原點(diǎn)的橢圓的兩個(gè)焦點(diǎn),則該橢圓的長(zhǎng)軸長(zhǎng)為2$\sqrt{2}$.

分析 由題意兩個(gè)虛數(shù)根z1,z2是共軛復(fù)數(shù),可得橢圓的短軸長(zhǎng):2b=|z1+z2|=|p|,焦距為2c=|z1-z2|,然后求出長(zhǎng)軸長(zhǎng).

解答 解:因?yàn)閜為實(shí)數(shù),p≠0,z1,z2為虛數(shù),
所以p2-4×2<0,即p2<8,
解得-2$\sqrt{2}$<p<2$\sqrt{2}$.
由z1,z2為共軛復(fù)數(shù),知Z1,Z2關(guān)于x軸對(duì)稱,
所以橢圓短軸在x軸上,又由橢圓經(jīng)過(guò)原點(diǎn),
可知原點(diǎn)為橢圓短軸的一端點(diǎn),
根據(jù)橢圓的性質(zhì),復(fù)數(shù)加,減法幾何意義及一元二次方程根與系數(shù)的關(guān)系,
可得橢圓的短軸長(zhǎng)=2b=|z1+z2|=|p|,
焦距2c=|z1-z2|=$\sqrt{8-{p}^{2}}$,
長(zhǎng)軸長(zhǎng)2a=$\sqrt{8-{p}^{2}+{p}^{2}}$=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本概念,橢圓的基本性質(zhì),是小型綜合題,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.金紅石(TiO2)的晶胞如圖所示,圖中色點(diǎn)代表鈦原子,黑點(diǎn)代表氧原子.長(zhǎng)方體的8個(gè)頂點(diǎn)和中心是鈦原子,4個(gè)氧原子的位置是A(0.31a,0.31b,0),B(0.69a,0.69b,0),C(0.81a,0,0.5c)和D(0.19a,0.81b,0.5c).中心處鈦原子與A處氧原子間的距離叫做鍵長(zhǎng).當(dāng)a=b時(shí),試求鍵長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.橢圓$\frac{x^2}{3}+\frac{y^2}{2}=1$的焦點(diǎn)坐標(biāo)是(  )
A.(0,±1)B.(±1,0)C.$(0,±\sqrt{2})$D.$(±\sqrt{2},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(m,-1)$,若$\overrightarrow a⊥\overrightarrow b$,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線3x-4y-5=0的傾斜角為( 。
A.$arctan\frac{3}{4}$B.$π-arctan\frac{3}{4}$C.$arctan\frac{4}{3}$D.$π-arctan\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{y-4≤0}\end{array}\right.$,則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=x-1與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知拋物線x2=8y的弦AB的中點(diǎn)的縱坐標(biāo)為4,則|AB|的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.拋物線C的頂點(diǎn)為原點(diǎn)O,焦點(diǎn)F在x軸正半軸,過(guò)焦點(diǎn)且傾斜角為$\frac{π}{4}$的直線l交拋物線于點(diǎn)A,B,若AB=8,則拋物線C的方程為y2=4x.

查看答案和解析>>

同步練習(xí)冊(cè)答案