下面是空間線面位置關系中傳遞性的部分相關命題:
①與兩條平行線中一條平行的平面必與另一條直線平行;
②與兩條平行線中一條垂直的平面 必與另一條直線垂直;
③與兩條垂直直線中一條平行的平面必與另一條直線垂直;
④與兩條垂直直線中一條垂直的平面必與另一條直線平行;
⑤與兩個平行平面中一個平行的直線必與另一個平面平行;
⑥與兩個平行平面中一個垂直的直線必與另一個平面垂直;
⑦與兩個垂直平面中一個平行的直線必與另一個平面垂直;
⑧與兩個垂直平面中一個垂直的直線必與另一個平面平行.
其中正確的命題個數(shù)有________個.

2

解析試題分析:①另一條直線可能在平面內,①錯;②線面垂直的性質,②正確;③與另一條直線可平行可相交,③錯;④另一條直線可能在平面內,④錯;⑤直線可能在另一個平面內,⑤錯;⑥面面平行的性質,⑥正確;⑦直線與另一個平面的位置關系不確定,⑦錯;⑧直線可能在另一個平面內,⑧錯.
考點:空間直線和平面的位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

是三條互不相同的空間直線,是兩個不重合的平面,
則下列命題中為真命題的是      (填所有正確答案的序號).
①若;       ②若;
③若;             ④若

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

右圖所示的直觀圖,其原來平面圖形的面積是         .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知直線l⊥平面α,直線mÍ平面β,則下列四個命題:
①若α∥β,則l⊥m;  ②若α⊥β,則l∥m;
③若l∥m,則α⊥β;  ④若l⊥m,則α∥β.
其中正確命題的序號是       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關系?梢缘贸龅恼_結論是:“設三棱錐A—BCD的三個側面ABC、ACD、ADB兩兩相互垂直,則                                       ”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

邊長是的正內接于體積是的球,則球面上的點到平面的最大距離為    .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知是兩個互相垂直的平面,是一對異面直線,下列五個結論:
(1),(2) (3)
(4)  (5)。其中能得到的結論有     (把所有滿足條件的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,正方體的棱長為1,的中點,為線段上的動點,過點的平面截該正方體所得的截面記為,則下列命題正確的是         (寫出所有正確命題的編號).

①當時,為四邊形
②當時,為等腰梯形
③當時,的交點滿足
④當時,為六邊形
⑤當時,的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

一個正方體的六個面上分別標有A,B,C,D,E,F,下圖是正方體的兩種不同放置,則與D面相對的面上的字母是________

查看答案和解析>>

同步練習冊答案