20.函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x<-1}\\{ln(x+a),x≥-1}\\{\;}\end{array}\right.$的圖象如圖所示,則f(-3)等于( 。
A.-$\frac{1}{2}$B.-$\frac{5}{4}$C.-1D.-2

分析 由條件利用函數(shù)的圖象可得a(-1)+b=3,ln(-1+a)=0,由此求得a、b的值,從而求得f(-3)的值.

解答 解:根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x<-1}\\{ln(x+a),x≥-1}\\{\;}\end{array}\right.$的圖象,可得a(-1)+b=3,ln(-1+a)=0,
求得a=2,b=5,∴f(x)=$\left\{\begin{array}{l}{2x+5,x<-1}\\{ln(x+2),x≥-1}\end{array}\right.$,f(-3)=2•(-3)+5=-1,
故選:C.

點評 本題主要考查分段函數(shù)的應(yīng)用,求函數(shù)的解析式、求函數(shù)的值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.隨機抽取100名年齡在[10,20),[20,30)…,[50,60)年齡段的市民進行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示,從不小于30歲的人中按年齡段分層抽樣的方法隨機抽取22人,則在[50,60)年齡段抽取的人數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若橢圓的兩焦點與短軸兩端點在單位圓上,則此橢圓的內(nèi)接正方形的邊長為$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}中,a1=1,公比q=2,前n項和為Sn,下列結(jié)論正確的是( 。
A.$?{n_0}∈N*,{a_{n_0}}+{a_{{n_0}+2}}=2{a_{{n_0}+1}}$
B.?n∈N*,an•an+1≤an+2
C.?n∈N*,Sn<an+1
D.$?{n_0}∈N*,{a_{n_0}}+{a_{{n_0}+3}}={a_{{n_0}+1}}+{a_{{n_0}+2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y-2≤0\\ y≤1.\end{array}\right.$,則目標函數(shù)z=x-3y的最小值為( 。
A.0B.1C.$-\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某公司從大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了14名男生和6名女生,這20名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分).公司規(guī)定:
(1)成績在180分以上者到甲部門工作,180分以下者到乙部門工作;(2)只有成績不低于190分的才能擔(dān)任助理工作.
(Ⅰ)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取8人,甲部門中至多有多少女生入選?
(Ⅱ)若公司選2人擔(dān)任助理工作,估計幾名女生入選的可能性最大?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$和$\overrightarrow$的夾角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.所示的程序框圖輸出的結(jié)果為S=35,則判斷框中應(yīng)填入的關(guān)于k的條件是(  )
A.k>7B.k≤6C.k>6D.k<6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知O是△ABC內(nèi)一點,∠AOB=150°,∠AOC=120°,且|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=3,若m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=$\overrightarrow{OC}$,則|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|=$\sqrt{8-2\sqrt{3}}$,m+$\sqrt{3}$n的值是-12.

查看答案和解析>>

同步練習(xí)冊答案