(14分)已知函數(shù).

(1)設的一個極大值點,的一個極小值點,求的最小值;

(2)若,求的值.

解:(1)由題意,得……2分

于是,當時等號成立. …………………………4分

所以的最小值為.                         ………………………… 6分

(2)因為,…………………………8分

,得,

所以,                       …………………………10分

所以

=…………………………12分

為偶數(shù)時,;當為奇數(shù)時,.…14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2007屆廣東深圳市學高考數(shù)學(理科)模擬試題 題型:044

已知函數(shù)和點P(1,0),過點P作曲線yf(x)的兩條切線PM、PN,切點分別為M、N

()設|MN|=g(t),試求函數(shù)g(t)的表達式;

()是否存在t,使得M、NA(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.

()()的條件下,若對任意的正整數(shù)n,在區(qū)間內(nèi)總存在m1個實數(shù)a1,a2,…,am,am1,使得不等式g(a1)g(a2)+…+g(am)g(am+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省杭州市2007年第二次高考科目教學質(zhì)量檢測數(shù)學試題卷(理科) 題型:044

已知函數(shù)和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.

(Ⅰ)設,試求函數(shù)g(t)的表達式;

(Ⅱ)是否存在t,使得M、N與A(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.

(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù)n,在區(qū)間內(nèi)總存在m+1個實數(shù)a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省韶關市北江中學2008屆高三年級第二次月考試卷(數(shù)學理) 題型:044

已知函數(shù)和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.

(Ⅰ)設|MN=g(t),試求函數(shù)g(t)的表達式;

(Ⅱ)是否存在t,使得M、N與A(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.

(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù)n,在區(qū)間內(nèi)總存在m+1個實數(shù)a1,a2,…,am,,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:河北省衡水中學2012屆高三上學期一調(diào)考試數(shù)學理科試題 題型:044

已知函數(shù)和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M(x1,y1)、N(x2,y2).

(1)求證:x1,x2為關于x的方程x2+2tx-t=0的兩根;

(2)設|MN|=g(t),求函數(shù)g(t)的表達式;

(3)在(2)的條件下,若在區(qū)間[2,16]內(nèi)總存在m+1個實數(shù)(可以相同),使得不等式成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.

(1)設,試求函數(shù)g(t)的表達式;

(2)是否存在t,使得M、N與A(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.

(3)在(1)的條件下,若對任意的正整數(shù)n,在區(qū)間內(nèi)總存在m+1個實數(shù),使得不等式成立,求m的最大值.

查看答案和解析>>

同步練習冊答案