【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,,試證:.
【答案】(1)單調(diào)增區(qū)間為與,減區(qū)間為;(2)見解析
【解析】
(1)求導(dǎo),令,可得增區(qū)間,令,可得減區(qū)間,要注意函數(shù)定義域?yàn)?/span>;
(2)構(gòu)造函數(shù),,求導(dǎo)后得,在上恒成立,即在上單調(diào)遞增,利用函數(shù)的單調(diào)性可得在上恒成立,因?yàn)?/span>,所以,即①;同理,構(gòu)造函數(shù),,可證②,結(jié)合①②,結(jié)論可證.
(1)由題設(shè)知函數(shù)的定義域?yàn)?/span>且
故當(dāng)時,;當(dāng)時,;
所以的單調(diào)增區(qū)間為與,減區(qū)間為;
(2)由(1)知:,先證.
構(gòu)造函數(shù),
則
故在上恒成立,即在上單調(diào)遞增
所以在上恒成立,
又,得,又且函數(shù)在上單調(diào)遞減
故,即 ①
再證.構(gòu)造函數(shù),
故在上恒成立,即在上單調(diào)遞增
所以在上恒成立,
又,得,
又且函數(shù)在上單調(diào)遞增
故,即 ②
結(jié)合①②得:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“移動支付、高鐵、網(wǎng)購、共享單車”被稱為中國的“新四大發(fā)明”.為了幫助50歲以上的中老年人更快地適應(yīng)“移動支付”,某機(jī)構(gòu)通過網(wǎng)絡(luò)組織50歲以上的中老年人學(xué)習(xí)移動支付相關(guān)知識.學(xué)習(xí)結(jié)束后,每人都進(jìn)行限時答卷,得分都在內(nèi).在這些答卷(有大量答卷)中,隨機(jī)抽出份,統(tǒng)計得分繪出頻率分布直方圖如圖.
(1)求出圖中的值,并求樣本中,答卷成績在上的人數(shù);
(2)以樣本的頻率為概率,從參加這次答卷的人群中,隨機(jī)抽取名,記成績在分以上(含分)的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,函數(shù)在點(diǎn)處的切線方程為,其中.
(1)求和并證明函數(shù)有且僅有一個零點(diǎn);
(2)當(dāng)時,恒成立,求最小的整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費(fèi)方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購公司統(tǒng)計了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;
(2)該公司為了吸引網(wǎng)購者,特別推出“玩網(wǎng)絡(luò)游戲,送免費(fèi)購物券”活動,網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進(jìn). 若遙控車最終停在“勝利大本營”,則網(wǎng)購者可獲得免費(fèi)購物券500元;若遙控車最終停在“失敗大本營”,則網(wǎng)購者可獲得免費(fèi)購物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從到)若擲出偶數(shù)遙控車向前移動兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費(fèi)購物券金額的期望值.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月6日,中國物流與采購聯(lián)合會正式發(fā)布了中國倉儲指數(shù),中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的一套指數(shù)體系,如圖所示的折線圖是2019年甲企業(yè)和乙企業(yè)的倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( )
A.2019年1月至4月甲企業(yè)的倉儲指數(shù)比乙企業(yè)的倉儲指數(shù)波動大
B.甲企業(yè)2019年的年平均倉儲指數(shù)明顯低于乙企業(yè)2019年的年平均倉儲指數(shù)
C.兩企業(yè)2019年的最大倉儲指數(shù)都出現(xiàn)在4月份
D.2019年7月至9月乙企業(yè)的倉儲指數(shù)的增幅高于甲企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的函數(shù),若對任何實(shí)數(shù)以及中的任意兩數(shù)、,恒有,則稱為定義在上的函數(shù).
(1)證明函數(shù)是定義域上的函數(shù);
(2)判斷函數(shù)是否為定義域上的函數(shù),請說明理由;
(3)若是定義域?yàn)?/span>的函數(shù),且最小正周期為,試證明不是上的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)在中,角所對的邊分別為,,,求的值;
(3)請敘述余弦定理(寫出其中一個式子即可)并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com