已知a∈R,函數(shù)f(x)=x|x-a|,
(Ⅰ)當a=2時,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當a>2時,求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值.
分析:(Ⅰ)把a=2代入,可得f(x)=
x(x-2)   x≥2
x(2-x)   x<2
,由二次函數(shù)的知識可得;
(Ⅱ)因為a>2,當x∈[1,2]時,f(x)=x(a-x)=-(x-
a
2
)2+
a2
4
,由二次函數(shù)的對稱性和單調(diào)性,分類討論可得答案.
解答:解:(Ⅰ)當a=2時,f(x)=x|x-2|=
x(x-2)   x≥2
x(2-x)   x<2

由二次函數(shù)的知識可知,單調(diào)遞增區(qū)間為(-∞,1),(2,+∞);
(Ⅱ)因為a>2,當x∈[1,2]時,f(x)=x(a-x)=-(x-
a
2
)2+
a2
4
,
1<
a
2
3
2
,即2<a≤3時,f(x)min=f(2)=2a-4,
a
2
3
2
,即a>3時,f(x)min=f(1)=a-1
故f(x)min=
2a-4      2<a≤3
a-1         a>3
點評:本題考查函數(shù)的單調(diào)性的判斷與證明,涉及二次函數(shù)在閉區(qū)間的最值與分類討論的思想,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
(Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
(1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e為自然對數(shù)的底).
(1)當a>0時,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x∈[0,2]時,求|f(x)|的最大值.

查看答案和解析>>

同步練習(xí)冊答案