工商部門對甲、乙兩家食品加工企業(yè)的產(chǎn)品進(jìn)行深入檢查后,決定對甲企業(yè)的5種產(chǎn)品和乙企業(yè)的3種產(chǎn)品做進(jìn)一步的檢驗.檢驗員從以上8種產(chǎn)品中每次抽取一種逐一不重復(fù)地進(jìn)行化驗檢驗.
(1)求前3次檢驗的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率;
(2)記檢驗到第一種甲企業(yè)的產(chǎn)品時所檢驗的產(chǎn)品種數(shù)共為X,求X的分布列和數(shù)學(xué)期望.
考點:離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計
分析:(Ⅰ)由已知條件利用對立事件概率計算公式能求出前3次檢驗的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率.
(Ⅱ)由題意知X的取值為1,2,3,4,分別求出相應(yīng)的概率,由此能求出X的分布列和X的數(shù)學(xué)期望.
解答: 解:(Ⅰ)P=1-
5
8
×
4
7
×
3
6
=
23
28
,
∴前3次檢驗的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率為
23
28
.…(4分)
(Ⅱ)由題意知X的取值為1,2,3,4,
P(X=1)=
5
8

P(X=2)=
3
8
×
5
7
=
15
56
,
P(X=3)=
3
8
×
2
7
×
5
6
=
5
56

P(X=4)=
3
8
×
2
7
×
1
6
=
1
56
,…(8分)
X的分布列如下表:
X1234
P
5
8
15
56
5
56
1
56
X的數(shù)學(xué)期望為:
E(X)=1×
5
8
+2×
15
56
+3×
5
56
+4×
1
56
=
3
2
.…(12分)
點評:本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時要認(rèn)真審題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
(sinx+cosx)2
1+2sin2x+sin22x
,
(Ⅰ)求f(
π
4
)的值;
(Ⅱ)若f(x)=2,且-
π
4
<x<
4
,求x的值;
(Ⅲ)若0<x<π,求不等式:f(x)≥4+2
3
的解集A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x
(x≠0).
(1)討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并證明;
(2)求函數(shù)f(x)在區(qū)間[
1
2
,2]上的最大值與最小值;
(3)試求函數(shù)y=
x
+
1
x+3
+1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P與平面上兩定點A(-
2
,0),B=(
2
,0)連線的斜率的積為定值-
1
2

(1)試求動點P的軌跡方程C.
(2)是否存在直線l:y=kx+1與曲線C交于M、N兩點,且以線段MN為直徑的圓過原點,若存在求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3,
a
b
的夾角為120°
(Ⅰ)求|
a
+
b
|;
(Ⅱ)當(dāng)x為何值時,x
a
-
b
a
+3
b
垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=cos(2x+
π
3
).
(1)用“五點法”作出它在長度為一個周期的閉區(qū)間上的簡圖;(自己做出坐標(biāo)系,并標(biāo)出橫縱坐標(biāo))
(2)求使函數(shù)y取最大值和最小值時自變量x的集合,并求出它的最大值和最小值;
(3)指出該函數(shù)的增區(qū)間和減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
x
-
2
x
12的展開式中.
(Ⅰ)求展開式中含x3項的系數(shù);
(Ⅱ)如果第3k項和第k+2項的二項式系數(shù)相等,試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=
1
3x+2
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2x3-2x2在區(qū)間[-1,2]上的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案