16.執(zhí)行如圖所示的程序框圖,如果輸入的t=50,則輸出的n=( 。
A.5B.6C.7D.8

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量n的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:第一次運行后s=2,a=3,n=1;
第二次運行后s=5,a=5,n=2;
第三次運行后s=10,a=9,n=3;
第四次運行后s=19,a=17,n=4;
第五次運行后s=36,a=33,n=5;
第六次運行后s=69,a=65,n=6;
此時不滿足s<t,輸出n=6,
故選:B.

點評 本題考查的知識點是程序框圖,在寫程序的運行結(jié)果時,模擬程序的運行過程是解答此類問題最常用的辦法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.數(shù)列{an}的前n項和Sn=an-1(a≠0,a≠1).試證明數(shù)列{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$.
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan$\frac{A}{2}$+tan$\frac{C}{2}$的值.
(3)若A+C=180°,AB=a,BC=b,CD=c,AD=d,記p=$\frac{a+b+c+d}{2}$,四邊形ABCD的面積為S,求證:S=$\sqrt{(p-a)(p-b)(p-c)(p-d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ x-2y≤0\end{array}\right.$,若存在實數(shù)a使得函數(shù)z=ax+y(a<0)取到最大值z(a)的解有無數(shù)個,則a=-1,z(a)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P為橢圓上與長軸端點不重合的一點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,過F2作∠F1PF2外角平分線的垂線,垂足為Q,若|OQ|=2b,橢圓的離心率為e,則$\frac{{{a^2}+{e^2}}}{2b}$的最小值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}是等差數(shù)列,且a7-2a4=6,a3=2,則公差d=( 。
A.2$\sqrt{2}$B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$+sin2x,則$\underset{lim}{△x→0}$$\frac{f(△x)-f(0)}{△x}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點O為坐標原點,橢圓C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,點$(\sqrt{3},\frac{1}{2})$在橢圓C上.直線l過點(1,1),且與橢圓C交于A,B兩點.
(I)求橢圓C的方程;
(Ⅱ)橢圓C上是否存在一點P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OP}$?若存在,求出此時直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知全集U=R,集合A={-1,1,3,5},集合B={x∈R|x≤2},則圖中陰影部分表示的集合( 。
A.{-1,1}B.{3,5}C.{-1,1}D.{-1,1}

查看答案和解析>>

同步練習冊答案