【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

點(diǎn)睛:在解決等差、等比數(shù)列的運(yùn)算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運(yùn)算,但思路簡潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進(jìn)行適當(dāng)變形. 在解決等差、等比數(shù)列的運(yùn)算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運(yùn)算量”的方法.

型】單選題
結(jié)束】
8

【題目】在數(shù)列{ }中,已知,,則等于(  )

A. B. C. D.

【答案】B

【解析】

將數(shù)列的等式關(guān)系兩邊取倒數(shù)是公差為的等差數(shù)列,再根據(jù)等差數(shù)列求和公式得到數(shù)列通項,再取倒數(shù)即可得到數(shù)列{}的通項.

將等式兩邊取倒數(shù)得到,是公差為的等差數(shù)列,=,根據(jù)等差數(shù)列的通項公式的求法得到=.

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】社會在對全日制高中的教學(xué)水平進(jìn)行評價時,常常將被清華北大錄取的學(xué)生人數(shù)作為衡量的標(biāo)準(zhǔn)之一.重慶市教委調(diào)研了某中學(xué)近五年(2013年-2017年)高考被清華北大錄取的學(xué)生人數(shù),制作了如下所示的表格(設(shè)2013年為第一年).

年份(第年)

人數(shù)(人)

(1)試求人數(shù)關(guān)于年份的回歸直線方程;

(2)在滿足(1)的前提之下,估計2018年該中學(xué)被清華北大錄取的人數(shù)(精確到個位);

(3)教委準(zhǔn)備在這五年的數(shù)據(jù)中任意選取兩年作進(jìn)一步研究,求被選取的兩年恰好不相鄰的概率.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x)(萬
元),若年產(chǎn)量不足80千件,C(x)的圖象是如圖的拋物線,此時C(x)<0的解集為(﹣30,0),且C(x)的最小值是﹣75,若年產(chǎn)量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為( ,0),將函數(shù)f(x)圖象上的所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將所得圖象向右平移0.5π個單位長度后得到函數(shù)g(x)的圖象;
(1)求函數(shù)f(x)與g(x)的解析式;
(2)當(dāng)a≥1,求實(shí)數(shù)a與正整數(shù)n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f (x)的定義域為D,如果存在非零常數(shù)T,對于任意 x∈D,都有f(x+T)=Tf (x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f( x)的“似周期”.現(xiàn)有下面四個關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為﹣1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號是 . (寫出所有滿足條件的命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

【答案】A

【解析】

根據(jù)數(shù)列前n項和的定義得到的值,再由數(shù)列的前n項和的公式得到,進(jìn)而求得首項,由=2,解得m.

Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則,

根據(jù)等差數(shù)列的前n項和公式得到Sm,得到首項為-2,故=2,解得m=5.

故答案為:A.

【點(diǎn)睛】

這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。

型】單選題
結(jié)束】
11

【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中位數(shù)為1010的一組數(shù)構(gòu)成等差數(shù)列,其末項為 2015,則該數(shù)列的首項為__________

【答案】5.

【解析】

設(shè)數(shù)列的首項為,則,所以,故該數(shù)列的首項為,所以答案應(yīng)填:

【考點(diǎn)定位】等差中項.

型】填空
結(jié)束】
15

【題目】對于不等式,則對區(qū)間上的任意x都成立的實(shí)數(shù)t的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).

(1)求雙曲線C2的方程;

(2)若直線lykx與雙曲線C2恒有兩個不同的交點(diǎn)AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC=
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.

查看答案和解析>>

同步練習(xí)冊答案