在一個盒子里裝有6枝圓珠筆,其中3枝一等品,2枝二等品,1枝三等品.
(1)從盒子里任取3枝恰有1枝三等品的概率多大?;
(2)從盒子里任取3枝,設(shè)為取出的3枝里一等品的枝數(shù),求的分布列及數(shù)學(xué)期望.

(1);(2)分布列見解析,.

解析試題分析:(1)先求出從6枝圓珠筆中任取3支的事件的總數(shù)A,再求出恰有1枝是三等品的事件的總數(shù)B,用B除以A即是所求的概率;(2)先判斷的所有可能的取值,再求出取每個值時對應(yīng)的概率,根據(jù)分布列的列法將所求的概率與對應(yīng)的的值分別填入表格,列出分布列,根據(jù)分布列中的的值及其對應(yīng)的概率以及公式求數(shù)學(xué)期望.
試題解析:(1)           ..2分
            4分
(2)               5分
,,
.                   .9分
所以的分布列是:
   10分
.                 12分
考點:1.隨機(jī)事件的概率;2.離散型隨機(jī)變量及其應(yīng)用;3.離散型隨機(jī)變量的分布列與數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)),若是從區(qū)間中隨機(jī)抽取的一個數(shù),是從區(qū)間中隨機(jī)抽取的一個數(shù),求方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一中食堂有一個面食窗口,假設(shè)學(xué)生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學(xué)生買飯所需的時間統(tǒng)計結(jié)果如下:

買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學(xué)生開始買飯時計時.
(Ⅰ)求第2分鐘末沒有人買晚飯的概率;
(Ⅱ)估計第三個學(xué)生恰好等待4分鐘開始買飯的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點制作(復(fù)賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復(fù)賽、決賽的概率分別是,且各輪次通過與否相互獨立.
(I)設(shè)該選手參賽的輪次為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)對于(I)中的,設(shè)“函數(shù)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)關(guān)于的一元二次方程.
(1)若是從、、四個數(shù)中任取的一個數(shù),是從、三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

淮南八公山某種豆腐食品是經(jīng)過A、B、C三道工序加工而成的,A、B、C工序的產(chǎn)品合格率分別為、、.已知每道工序的加工都相互獨立,三道工序加工的產(chǎn)品都為合格時產(chǎn)品為一等品;有兩次合格為二等品;其它的為廢品,不進(jìn)入市場.
(Ⅰ)正式生產(chǎn)前先試生產(chǎn)2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設(shè)ξ為加工工序中產(chǎn)品合格的次數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中有8個大小相同的小球,其中1個黑球,3個白球,4個紅球.
(I)若從袋中一次摸出2個小球,求恰為異色球的概率;
(II)若從袋中一次摸出3個小球,且3個球中,黑球與白球的個數(shù)都沒有超過紅球的個數(shù),記此時紅球的個數(shù)為,求的分布列及數(shù)學(xué)期望E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n。如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗。
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

德陽中學(xué)數(shù)學(xué)競賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,

課    程
初等代數(shù)
初等幾何
初等數(shù)論
微積分初步
合格的概率




(1)求甲同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;
(2)記表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

同步練習(xí)冊答案