已知二次函數(shù)),若是從區(qū)間中隨機抽取的一個數(shù),是從區(qū)間中隨機抽取的一個數(shù),求方程沒有實數(shù)根的概率.

方程沒有實數(shù)根的概率為.

解析試題分析:先由二次方程沒有實數(shù)根得到,然后結(jié)合的取值范圍作出不等式的平面區(qū)域,最后由幾何概型的概率計算公式可得所要求的概率.
試題解析:由方程沒有實數(shù)根,得:或者,又因為
作出平面區(qū)域圖如下圖所示                 8分

可知方程沒有實數(shù)根的概率為:
故方程沒有實數(shù)根的概率為           12分.
考點:1.幾何概型的概率問題;2.二次方程的根的個數(shù)與判別式的關(guān)系;3.數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

月“神舟 ”發(fā)射成功.這次發(fā)射過程共有四個值得關(guān)注的環(huán)節(jié),即發(fā)射、實驗、授課、返回.據(jù)統(tǒng)計,由于時間關(guān)系,某班每位同學(xué)收看這四個環(huán)節(jié)的直播的概率分別為、、,并且各個環(huán)節(jié)的直播收看互不影響.
(1)現(xiàn)有該班甲、乙、丙三名同學(xué),求這名同學(xué)至少有名同學(xué)收看發(fā)射直播的概率;
(2)若用表示該班某一位同學(xué)收看的環(huán)節(jié)數(shù),求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在打靶訓(xùn)練中,某戰(zhàn)士射擊一次的成績在9環(huán)(包括9環(huán))以上的概率是0.18,在8~9環(huán)(包括8環(huán))的概率是0.51,在7~8環(huán)(包括7環(huán))的概率是0.15,在6~7環(huán)(包括6環(huán))的概率是0.09.計算該戰(zhàn)士在打靶訓(xùn)練中射擊一次取得8環(huán)(包括8環(huán))以上成績的概率和該戰(zhàn)士打靶及格(及格指6環(huán)以上包括6環(huán))的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司研制出一種新型藥品,為測試該藥品的有效性,公司選定個藥品樣本分成三組,測試結(jié)果如下表:

分組



藥品有效



藥品無效



已知在全體樣本中隨機抽取個,抽到組藥品有效的概率是
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取個測試結(jié)果,問應(yīng)在組抽取樣本多少個? [來源:學(xué)優(yōu)]
(2)已知,,求該藥品通過測試的概率(說明:若藥品有效的概率不小于%,則認為測試通過).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點的坐標(biāo)為.
(1)求當(dāng)時,點滿足的概率;
(2)求當(dāng)時,點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個數(shù)字模糊,無法確認,假設(shè)這個數(shù)字具有隨機性,并在圖中以表示.
 
(Ⅰ)若甲、乙兩個小組的數(shù)學(xué)平均成績相同,求的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率;
(Ⅲ)當(dāng)時,分別從甲、乙兩組中各隨機選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)成績之差的絕對值為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一次搶險救災(zāi)中,某救援隊的50名隊員被分別分派到四個不同的區(qū)域參加救援工作,其分布的情況如下表,從這50名隊員中隨機抽出2人去完成一項特殊任務(wù).

區(qū)域
A
B
C
D
人數(shù)
20
10
5
15
(1)求這2人來自同一區(qū)域的概率;
(2)若這2人來自區(qū)域A,D,并記來自區(qū)域A隊員中的人數(shù)為X,求隨機變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一個盒子里裝有6枝圓珠筆,其中3枝一等品,2枝二等品,1枝三等品.
(1)從盒子里任取3枝恰有1枝三等品的概率多大?;
(2)從盒子里任取3枝,設(shè)為取出的3枝里一等品的枝數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案