分析 (1)由點E是BC的中點,點F是PB中點,得EF∥PC,由此得到EF∥平面PAC.
(2)由已知得AC=AB=1,∠PDA=45°,PA=1,從而BC⊥AE,BC⊥PE,由此能證明平面PBC⊥平面PAE.
解答 解:(1)當(dāng)F是PB中點時,EF∥平面PAC.
理由如下:
∵點E是BC的中點,點F是PB中點,
∴EF∥PC,
∵EF?平面PAC,PC?平面PAC,
∴EF∥平面PAC.
證明:(2)∵PA⊥平面ABCD,四邊形ABCD是菱形,
AB=1,∠ABC=60°,PD與平面ABCD所成的角是45°,點E是BC的中點,
∴AC=AB=1,∠PDA=45°,∴PA=1,
∴BC⊥AE,PC=PB,∴BC⊥PE,
∵AE∩PE=E,∴BC⊥平面PAE,
∵BC?PBC,∴平面PBC⊥平面PAE.
點評 本題考查使線面平行的點的位置的判斷與求法,考查面面垂直的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:填空題
如果y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質(zhì)”;
②若奇函數(shù)y=f(x)具有“P(2)性質(zhì)”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質(zhì)”,圖象關(guān)于點(1,0)成中心對稱,且在(﹣1,0)上單調(diào)遞減,則y=f(x)在(﹣2,﹣1)上單調(diào)遞減,在(1,2)上單調(diào)遞增;
④若不恒為零的函數(shù)y=f(x)同時具有“P(0)性質(zhì)”和“P(3)性質(zhì)”,函數(shù)y=f(x)是周期函數(shù).
其中正確的是 (寫出所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(理)試卷(解析版) 題型:解答題
已知點是圓上任意一點(是圓心),點與點關(guān)于原點對稱.線段的中垂線分別與交于兩點.
(1)求點的軌跡的方程;
(2)直線經(jīng)過,與拋物線交于兩點,與交于兩點.當(dāng)以為直徑的圓經(jīng)過時,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆河南新鄉(xiāng)一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知是虛數(shù)單位,,則“”是“”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com