【題目】已知復數(shù)z=x+yi(x,y∈R)滿足 ,則y≥x﹣1的概率為(
A.
B.
C.
D.

【答案】C
【解析】解:復數(shù)z=x+yi(x,y∈R)滿足 ,它的幾何意義是以(0,0)為圓心,1為半徑的圓以及內(nèi)部部分.y≥x﹣1的圖形是除去圖形中陰影部分,如圖:
復數(shù)z=x+yi(x,y∈R)滿足 ,則y≥x﹣1的概率: =
故選:C.
【考點精析】本題主要考查了復數(shù)的模(絕對值)和幾何概型的相關知識點,需要掌握復平面內(nèi)復數(shù)所對應的點到原點的距離,是非負數(shù),因而兩復數(shù)的?梢员容^大;復數(shù)模的性質(zhì):(1)(2)(3)若為虛數(shù),則;幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2016年巴西奧運會的周邊商品有80%左右為“中國制造”,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測量數(shù)據(jù):

編號

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81


(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:
(2)當產(chǎn)品中的微量元素x、y滿足:x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},則點P所在的區(qū)域的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a是常數(shù),對任意實數(shù)x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)設m>n>0,求證:2m+ ≥2n+a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}各項為正數(shù),且a2=4a1 , an+1= +2an(n∈N*
(I)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)令bn=log3(1+a2n1),數(shù)列{bn}的前n項和為Tn , 求使Tn>345成立時n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=3,若|an+1﹣an|=2n(n∈N*),且{a2n1}是遞增數(shù)列、{a2n}是遞減數(shù)列,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線C: ,F(xiàn)1 , F2為其左右兩個焦點.
(1)設O為坐標原點,M為雙曲線C右支上任意一點,求 的取值范圍;
(2)若動點P與雙曲線C的兩個焦點F1 , F2的距離之和為定值,且cos∠F1PF2的最小值為 ,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習冊答案