【題目】已知函數(shù)f(x)=x2+2x+a
(1)當(dāng) 時,求不等式f(x)>1的解集;
(2)若對于任意x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a= 時,f(x)>1即 ,化簡得2x2+4x﹣1>0,
解得x>﹣1+ 或x<﹣1﹣ ,
∴不等式f(x)>1的解集為:
(2)解:f(x)>0即x2+2x+a>0對x∈[1,+∞)恒成立,可化為a>﹣x2﹣2x對x∈[1,+∞)恒成立,
令g(x)=﹣x2﹣2x,可知g(x)在[1,+∞)上單調(diào)遞減,
∴當(dāng)x=1時,gmax(x)=﹣3,
∴a>﹣3.
【解析】(1)a= 時,化簡不等式,根據(jù)二次不等式的求解方法可得結(jié)果;(2)f(x)>0即x2+2x+a>0對x∈[1,+∞)恒成立,分離出參數(shù)a后轉(zhuǎn)化為二次函數(shù)的最值問題可求;
【考點精析】利用解一元二次不等式對題目進(jìn)行判斷即可得到答案,需要熟知求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)圓弧x2+y2=1(x≥0,y≥0)與兩坐標(biāo)軸正半軸圍成的扇形區(qū)域為M,過圓弧上中點A做該圓的切線與兩坐標(biāo)軸正半軸圍成的三角形區(qū)域為N.現(xiàn)隨機(jī)在區(qū)域N內(nèi)投一點B,若設(shè)點B落在區(qū)域M內(nèi)的概率為P,則P的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建4月質(zhì)檢】如圖,三棱柱中, , , 分別為棱的中點.
(1)在平面內(nèi)過點作平面交于點,并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AC⊥BC,AB⊥BB1 , AC=BC=BB1 , D為AB的中點,且CD⊥DA1 .
(1)求證:BC1∥平面DCA1;
(2)求BC1與平面ABB1A1所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x2+y2﹣4x﹣2y﹣k=0表示圖形為圓.
(1)若已知曲線關(guān)于直線x+y﹣4=0的對稱圓與直線6x+8y﹣59=0相切,求實數(shù)k的值;
(2)若k=15,求過該曲線與直線x﹣2y+5=0的交點,且面積最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上.這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象.過去50周的資料顯示,該地周光照量(小時)都在30以上.其中不足50的周數(shù)大約有5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周.根據(jù)統(tǒng)計某種改良黃瓜每個蔬菜大棚增加量(百斤)與每個蔬菜大棚使用農(nóng)夫1號液體肥料(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖:
(Ⅰ)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大棚增加量是多少斤?
(Ⅱ)因蔬菜大棚對光照要求較大,某光照控制儀商家為應(yīng)對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運行,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時) | |||
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為5000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損800元,欲使商家周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?
附:回歸方程系數(shù)公式: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com