分析 2x+y=2x+y+1-1=(2x+y+1)•$\frac{1}{2}$($\frac{1}{x}$+$\frac{2}{y+1}$)-1=$\frac{1}{2}$(2+2+$\frac{4x}{y+1}$+$\frac{y+1}{x}$)-1,利用基本不等式可得.
解答 解:∵$\frac{1}{x}$+$\frac{2}{y+1}$=2,
∴2x+y=2x+y+1-1=(2x+y+1)•$\frac{1}{2}$($\frac{1}{x}$+$\frac{2}{y+1}$)-1=$\frac{1}{2}$(2+2+$\frac{4x}{y+1}$+$\frac{y+1}{x}$)-1≥2-1+$\frac{1}{2}$×2$\sqrt{\frac{4x}{y+1}•\frac{y+1}{x}}$=1+2=3,
當且僅當x=1,y=1時取等號,
故2x+y的最小值為3,
故答案為:3.
點評 本題考查基本不等式求最值,“1”的整體代換是解決問題的關鍵,屬中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-1,1) | C. | (1,+∞) | D. | (-∞,-1)和(1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 6 | C. | 4$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com