【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)在極坐標(biāo)系下,設(shè)曲線與射線和射線分別交于,兩點(diǎn),求的面積;

(2)在直角坐標(biāo)系下,直線的參數(shù)方程為為參數(shù)),直線與曲線相交于,兩點(diǎn),求的值.

【答案】(1);(2).

【解析】試題分析:(1)把曲線的參數(shù)方程,化為曲線的極坐標(biāo)方程,分別代入,可得點(diǎn),對(duì)應(yīng)的,,得到所以的值,即可求得三角形的面積;

(2)由題意,得曲線的直角坐標(biāo)方程,將的參數(shù)方程代入曲線的普通方程,得到,進(jìn)而求得的長(zhǎng).

試題解析:

(1)因?yàn)榍的參數(shù)方程為為參數(shù)),

所以曲線的極坐標(biāo)方程為,

分別代入,可得點(diǎn),對(duì)應(yīng)的,,滿足:.

所以.

,所以的面積為 .

(2)曲線的直角坐標(biāo)方程為.

的參數(shù)方程代入曲線的普通方程得.

設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,

所以 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影為,動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.

(1)求的方程;

(2)設(shè)軸正半軸的交點(diǎn)為,過點(diǎn)的直線的斜率為,交于另一點(diǎn)為.若以點(diǎn)為圓心,以線段長(zhǎng)為半徑的圓與有4個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,若橢圓,則稱橢圓與橢圓 “相似”.

(1)求經(jīng)過點(diǎn),且與橢圓 “相似”的橢圓的方程;

(2)若,橢圓的離心率為,在橢圓上,過的直線交橢圓,兩點(diǎn),且.

①若的坐標(biāo)為,且,求直線的方程;

②若直線,的斜率之積為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?

愿意

不愿意

總計(jì)

男生

女生

總計(jì)

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再從中抽取2人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直角梯形ABCD中,,AB//DC,ABAD,ECD的中點(diǎn),沿AE把△DAE折起到△PAE的位置(D折后變?yōu)?/span>P),使得PB=2,如圖2.

Ⅰ)求證:平面PAE⊥平面ABCE;

Ⅱ)求點(diǎn)B到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為

(1)求曲線的普通方程及直線的直角坐標(biāo)方程;

(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,圓.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求,的極坐標(biāo)方程;

(2)設(shè)曲線為參數(shù)且),與圓,分別交于,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

(Ⅰ)若的圖像在處的切線過點(diǎn),求的值并討論上的單調(diào)增區(qū)間;

(Ⅱ)定義:若直線與曲線、都相切,則我們稱直線為曲線、的公切線.若曲線存在公切線,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案