已知函數(shù)g(x)=aln x·f(x)=x3 +x2+bx
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)b=0時(shí),設(shè)F(x)=,對(duì)任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.
(1);(2);(3)詳見解析.
【解析】
試題分析:(1)先求函數(shù)的導(dǎo)數(shù),因?yàn)樵趨^(qū)間不單調(diào),所以導(dǎo)函數(shù)的值不恒大于或小于0,即函數(shù)的最大值大于0,函數(shù)的最小值小于0,即不單調(diào);
(2)根據(jù)條件化簡(jiǎn)得,,,求出, 的最小值即可確定的范圍,首先對(duì)函數(shù)求導(dǎo),確定單調(diào)性,求出最值;
(3)先假設(shè)曲線上存在兩點(diǎn)滿足題意,設(shè)出,則,從而由是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形可建立關(guān)系式,分情況求解即可.
試題解析:(1)由
得 因在區(qū)間[1,2]上不是單調(diào)函數(shù)
所以在[1,2]上最大值大于0,最小值小于0
∴ 4分
(2)由,得.
,且等號(hào)不能同時(shí)取,,即
恒成立,即 6分
令,求導(dǎo)得,,
當(dāng)時(shí),,從而,
在上為增函數(shù),,
. 8分
(3)由條件,,
假設(shè)曲線上存在兩點(diǎn),滿足題意,則,只能在軸兩側(cè), 9分
不妨設(shè),則,且.
是以為直角頂點(diǎn)的直角三角形,,
(*),
是否存在,等價(jià)于方程在且時(shí)是否有解.
①若時(shí),方程為,化簡(jiǎn)得,此方程無(wú)解; 12分
②若時(shí),方程為,即,
設(shè),則,
顯然,當(dāng)時(shí),,即在上為增函數(shù),
的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719140412433460/SYS201411171914178436678638_DA/SYS201411171914178436678638_DA.072.png">,即,當(dāng)時(shí),方程(*)總有解.
對(duì)任意給定的正實(shí)數(shù),曲線 上總存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上. 14分
考點(diǎn):1.利用導(dǎo)數(shù)求最大,最小值;2.導(dǎo)數(shù)的綜合應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
以下四個(gè)命題中:
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1;
③某項(xiàng)測(cè)量結(jié)果ξ服從正態(tài)分布,則;
④對(duì)于兩個(gè)分類變量X與Y的隨機(jī)變量k2的觀測(cè)值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大.以上命題中其中真命題的個(gè)數(shù)為( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,函數(shù)(其中,,)與坐標(biāo)軸的三個(gè)交點(diǎn)、、滿足,,為的中點(diǎn),,則的值為( )
A. B. C.8 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,函數(shù)(其中,,)與坐標(biāo)軸的三個(gè)交點(diǎn)、、滿足,,為的中點(diǎn),, 則的值為____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,一個(gè)四棱錐的底面為正方形,其三視圖如圖所示,則這個(gè)四棱錐的體積為( )
A、1 B、2 C、3 D、4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(2b+c)cosA十a(chǎn)cosC =0。
(1)求角A的大;
(2)求的最大值,并求取得最大值時(shí)角B、C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省宜春市高三考前模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且直線BD相切的圓內(nèi)運(yùn)動(dòng),,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測(cè)試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | ||||||
甲 | 3 | 7 | 20 | 40 | 20 | 10 |
乙 | 5 | 15 | 35 | 35 | 7 | 3 |
根據(jù)上表統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計(jì)算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計(jì)甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com