數(shù)列滿足,若,那么的值為

[  ]

A1   B2   C3   D4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱周期.例如當(dāng)xn=2時(shí),{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時(shí),{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時(shí)為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項(xiàng)和Sn,試問(wèn)是否存在p、q,使對(duì)任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xm+n=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小正值稱作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱周期.例如當(dāng)xn=2時(shí),{xn}是周期為1的周期數(shù)列;當(dāng)yn=sin(
2
)
時(shí),{yn}是周期為4的周期數(shù)列.設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1=1,a2=20.
(1)若數(shù)列{an}是周期為3的周期數(shù)列,則常數(shù)λ的值是
-1
-1
;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若λ=1,則S2012=
21
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在其定義域上滿足:xf(x)+2af(x)=x+a-1,a>0.
①函數(shù)y=f(x)的圖象是否是中學(xué)對(duì)稱圖形?若是,請(qǐng)指出其對(duì)稱中心(不證明);
②當(dāng)f(x)∈[
1
2
,
4
5
]
時(shí),求x的取值范圍;
③若f(0)=0,數(shù)列{an}滿足a1=1,那么若0<an+1≤f(an)正整數(shù)N滿足n>N時(shí),對(duì)所有適合上述條件的數(shù)列{an},an
1
10
恒成立,求最小的N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列中,如果存在常數(shù),使得對(duì)于任意正整數(shù)均成立,那么就稱數(shù)列為周期數(shù)列,其中叫做數(shù)列的周期. 已知周期數(shù)列滿足,若,當(dāng)數(shù)列的周期為時(shí),則數(shù)列的前2015項(xiàng)的和為(    )

A.1344            B.1343           C.1342           D. 1341

查看答案和解析>>

同步練習(xí)冊(cè)答案