18.已知數(shù)列{an}中a1=1,an+1=an+2n(n∈N*)求其通項公式.

分析 當(dāng)n≥2時,利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,進(jìn)而計算可得結(jié)論.

解答 解:當(dāng)n≥2時,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+1
=2×$\frac{n(n-1)}{2}$+1
=n2-n+1,
又∵a1=1滿足上式,
∴an=n2-n+1.

點(diǎn)評 本題考查數(shù)列的通項公式,考查運(yùn)算求解能力,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}的前n項和為Sn,對任意n∈N*,Sn=(-1)nan+$\frac{1}{{2}^{n}}$+2n-6且(an+1-p)(an-p)<0恒成立,則實數(shù)p的取值范圍是$({-\frac{7}{4},\frac{23}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c.若$bcosC+\frac{csinB}{{\sqrt{3}}}=a$.
(1)求角B的大;
(2)若△ABC的面積為$\sqrt{3}$,A>C,且其外接圓的面積為4π.試求邊a與邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)F2到直線x+y+5=0的距離為3$\sqrt{2}$.
(1)求橢圓C的方程;
(2)若直線l經(jīng)過橢圓C的右焦點(diǎn)F2,且與拋物線y2=4x交于A1,A2兩點(diǎn),與橢圓C交于B1,B2兩點(diǎn),當(dāng)以B1B2為直徑的圓經(jīng)過橢圓C的左焦點(diǎn)F1時,求以A1A2為直徑的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象如圖所示.
(1)求A,ω,φ的值;
(2)若y=1,求對應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+a,直線y=x與曲線y=f(x)相切.
(Ⅰ)求a的值;
(Ⅱ)證明:xex-1[f(x)-2]+f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若α∈(π,$\frac{3}{2}$π),tanα=$\frac{5}{12}$,求tan$\frac{α}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=(x-1)2(x≥1)的反函數(shù)y=1+$\sqrt{x}$(x≥0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(x2+x+1)(1-x)4展開式中x2的系數(shù)為3.

查看答案和解析>>

同步練習(xí)冊答案