已知|
OA
|=4,|
OB
|=2,
OA
OB
的夾角為120°,點(diǎn)P為線段AB上得一點(diǎn),且
BP
=3
PA
,則
OP
AB
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:
OA
,
OB
當(dāng)基底,表示
OP
,
AB
,則要求的式子變?yōu)椋?nbsp;
3
4
OA
+
1
4
OB
)(
OB
-
OA
),再利用兩個(gè)向量的數(shù)量積的定義,數(shù)量積公式運(yùn)算求得結(jié)果.
解答: 解:由題意可得
OP
=
OA
+
AP
=
OA
+
1
4
AB
=
OA
+
1
4
(
OB
-
OA
)
=
3
4
OA
+
1
4
OB
,
AB
=
OB
-
OA
,
所以
OP
AB
=(
3
4
OA
+
1
4
OB
)(
OB
-
OA
)=
3
4
OA
OB
-
3
4
OA
2
+
1
4
OB
2
-
1
4
OB
OA

=
3
4
×4×2×cos120°-
3
4
×42+
1
4
×22-
1
4
×4×2×cos120°

=-3-12+1+1
=-13;
故答案為-13.
點(diǎn)評:本題考查了向量的數(shù)量積的定義的應(yīng)用;屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(
1
2
,1),直線l的參數(shù)方程為
x=
1
2
+
3
2
t
y=1+
1
2
t
(t為參數(shù))若以O(shè)為極點(diǎn),以O(shè)x為極軸,選擇相同的單位長度建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=
2
cos(θ-
π
4

(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足an+1=an+log2018(1+
1
n
),n∈N+,a1=0,則a2018=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為ρ2=
4
4sin2θ+cos2θ
,直線l的極坐標(biāo)方程為ρ(cosθ+2sinθ)+6=0
(Ⅰ)求該曲線C的直角坐標(biāo)系方程及離心率e;
(Ⅱ)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2012年歐洲杯足球賽將于6月份在波蘭和烏克蘭兩個(gè)國家舉行,東道主波蘭所在的A組共有四支球隊(duì),四支球隊(duì)之間進(jìn)行單循環(huán)比賽,共進(jìn)行的比賽的場數(shù)為( 。
A、6B、12C、3D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.它的外接圓半徑為6.∠B,∠C和△ABC的面積S滿足條件:S=a2-(b-c)2且sinB+sinC=
4
3

(1)求sinA; 
(2)求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是橢圓
x2
4
+y2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上運(yùn)動(dòng),則
PF1
PF2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心在直線2x-y-3=0上,且過點(diǎn)A(5,2)和點(diǎn)B(3,2),則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
34
25
71
,B=
51
37
85
,則B-A=
 

查看答案和解析>>

同步練習(xí)冊答案