【題目】已知自然數(shù)有20個(gè)正整數(shù)因子(包括1和本身),它們從小到大依次記作,,,…,,且序號(hào)為的因數(shù)為.求自然數(shù).
【答案】2000
【解析】
因?yàn)?/span>是的因數(shù),
所以,與是的因數(shù).
于是,,.
∴.
∵,
∴.
∴.此時(shí),,.
由知,含有1,2,4,5,10,20這六個(gè)正整數(shù)因子,
所以至少含有2和5這兩個(gè)質(zhì)因子.
又有20個(gè)正因子,,
故可設(shè)為(為不等于2和5的質(zhì)數(shù))、、或.
(1)當(dāng)時(shí),
①當(dāng)時(shí),,,…,依次為1,2,3,4,5,6,8,10.此時(shí),,與相矛盾.
②當(dāng)時(shí),,,…,依次為1,2,4,5,7,8,10,14.此時(shí),,與相矛盾.
③當(dāng)時(shí),,,,…,依次為1,2,4,5,8,10,,16或?yàn)?/span>1,2,4,5,8,10,16,,與相矛盾.
④當(dāng)時(shí),的正因數(shù)為1,2,4,5,8,10,16,20,40,80,,,,,,….
∴,,,.
∴.
于是,,不為質(zhì)數(shù),
故.
(2)當(dāng)時(shí),,,,.不滿足.
(3)當(dāng)時(shí),,與相矛盾.
(4)當(dāng)時(shí),,,,,,,.顯然滿足,.
∴.
故所求的自然數(shù)為2000.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),記在點(diǎn)處的切線為.
(1)當(dāng)時(shí),求證:函數(shù)的圖像(除切點(diǎn)外)均為切線的下方;
(2)當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個(gè),其中紅球5個(gè),白球3個(gè),藍(lán)球2個(gè).現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個(gè)球.重復(fù)以上操作,最多取3次,過程中如果取出藍(lán)色球則不再取球.
(1)求整個(gè)過程中恰好取到2個(gè)白球的概率;
(2)求取球次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒市在某次高三適應(yīng)性考試中對(duì)數(shù)學(xué)成績(jī)數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(jī)分析,結(jié)果這50名學(xué)生的成績(jī)?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖:
(1)試由樣本頻率分布直方圖估計(jì)該校數(shù)學(xué)成績(jī)的平均分?jǐn)?shù);
(2)若從這50名學(xué)生中成績(jī)?cè)?/span>125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的概率.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共名學(xué)生同時(shí)參與了“我運(yùn)動(dòng),我健康,我快樂”的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取名和名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 |
跳繩個(gè)數(shù) | 179 | 181 | 168 | 177 | 183 |
踢毽個(gè)數(shù) | 85 | 78 | 79 | 72 | 80 |
(1)求高一、高二兩個(gè)年級(jí)各有多少人?
(2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱該學(xué)生為“運(yùn)動(dòng)達(dá)人”.
①?gòu)母叨昙?jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為“運(yùn)動(dòng)達(dá)人”的概率;
②從高二年級(jí)抽出的上述名學(xué)生中,隨機(jī)抽取人,求抽取的名學(xué)生中為“span>運(yùn)動(dòng)達(dá)人”的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)判斷的單調(diào)性,并證明之;
(2)若存在實(shí)數(shù),,使得函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率與雙曲線的離心率互為倒數(shù),分別為橢圓的左、右頂點(diǎn),且.
(1)求橢圓的方程;
(2)已知過左頂點(diǎn)的直線與橢圓另交于點(diǎn),與軸交于點(diǎn),在平面內(nèi)是否存在一定點(diǎn),使得恒成立?若存在,求出該點(diǎn)的坐標(biāo),并求面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抑制房?jī)r(jià)過快上漲和過度炒作,各地政府響應(yīng)中央號(hào)召,因地制宜出臺(tái)了系列房?jī)r(jià)調(diào)控政策.某市為擬定出臺(tái)“房產(chǎn)限購(gòu)的年齡政策”為了解人們對(duì)“房產(chǎn)限購(gòu)年齡政策”的態(tài)度,對(duì)年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“房產(chǎn)限購(gòu)”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
年齡 | |||||
支持的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為以44歲為分界點(diǎn)的不同人群對(duì)“房產(chǎn)限購(gòu)年齡政策”的支持度有差異;
44歲以下 | 44歲及44歲以上 | 總計(jì) | |
支持 | |||
不支持 | |||
總計(jì) |
(2)若以44歲為分界點(diǎn),從不支持“房產(chǎn)限購(gòu)”的人中按分層抽樣的方法抽取8人參加政策聽證會(huì).現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是44歲以下時(shí),求抽到的另一人是44歲以上的概率.
②記抽到44歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com