11.已知△ABC中,∠BAC,∠ABC,∠BCA所對的邊分別為a,b,c,AD⊥BC且AD交BC于點D,AD=a,若$\frac{si{n}^{2}∠ABC+si{n}^{2}∠BCA+si{n}^{2}∠BAC}{sin∠ABC•sin∠BCA}$≤m恒成立,則實數(shù)m的取值范圍為[2$\sqrt{2}$,+∞).

分析 根據(jù)題意,利用正弦定理、三角形面積公式以及余弦定理,結(jié)合三角函數(shù)的有界性,即可求出m的取值范圍.

解答 解:如圖所示,

由正弦定理知,
$\frac{si{n}^{2}∠ABC+si{n}^{2}∠BCA+si{n}^{2}∠BAC}{sin∠ABC•sin∠BCA}$=$\frac{^{2}{+c}^{2}{+a}^{2}}{bc}$,
由三角形面積公式可得$\frac{1}{2}$bcsin∠BAC=$\frac{1}{2}$a•AD,
又AD=a,
所以bcsin∠BAC=a2,
由余弦定理得b2+c2=a2+2bccos∠BAC,
故$\frac{^{2}{+c}^{2}{+a}^{2}}{bc}$=2sin∠BAC+2cos∠BAC
=2$\sqrt{2}$sin(∠BAC+$\frac{π}{4}$)≤2$\sqrt{2}$,
所以m≥2$\sqrt{2}$,
即實數(shù)m的取值范圍是[2$\sqrt{2}$,+∞).
故答案為:[2$\sqrt{2}$,+∞).

點評 本題考查了正弦定理、余弦定理、三角形面積公式的應用問題,也考查了綜合運用知識的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)集合A={1,a,b},B={a,a2,ab},且A=B,求a2012+b2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)知集合M={x|x2-2x-3<0},N={x|1≤x≤6},則M∩N=( 。
A.(1,3]B.[1,3)C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{lo{g}_{2}(2-x),x∈B}\end{array}\right.$,若f(x0)∈A,則x0的取值范圍是(2-$\sqrt{2}$,1];若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是($\frac{3}{2}-\sqrt{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.執(zhí)行如圖的程序框圖,若輸出的值為$\frac{35}{4}$,則判斷框中可以填(  )
A.i$>\frac{3}{2}$?B.i$≥\frac{3}{2}$?C.i>$\frac{5}{4}$?D.i$≥\frac{5}{4}$?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示,直線DA過圓O的圓心,且交圓O于A,B兩點,BC=CO=$\frac{1}{2}$BD,DM為圓O的一條割線,且與圓O交于M,T兩點.
(1)證明:DT•DM=DO•DC;
(2)若∠DOT=80°,BM平分∠DMC,求∠BMC的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知不等式|x2-3x-4|<2x+2的解集為{x|a<x<b}.
(Ⅰ)求a、b的值;
(Ⅱ)若m,n∈(-1,1),且mn=$\frac{a}$,S=$\frac{a}{{{m^2}-1}}$+$\frac{{3({{n^2}-1})}}$,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.拋物線C:y2=4x的焦點是F,準線是l,點A在l上,點B在C上,若$\overrightarrow{AB}$=2$\overrightarrow{BF}$,則|$\overrightarrow{BF}$|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
P(X2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

同步練習冊答案