精英家教網 > 高中數學 > 題目詳情

(本小題13分)已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上,,求直線的方程.

(1)  (2)

解析試題分析:(1)由已知可設橢圓的方程為 
其離心率為,故,則
故橢圓的方程為        5分
(2)解法一 兩點的坐標分別記為 
及(1)知,三點共線且點,不在軸上,
因此可以設直線的方程為
代入中,得,所以
代入中,則,所以
,得,即
解得,故直線的方程為         13分
考點:橢圓方程性質及直線與橢圓相交問題
點評:第二問由已知中的向量可知只需求解出A,B兩點坐標代入即可得到關于所求直線斜率k的直線,因此設AB直線,聯(lián)立方程解出方程組

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知點是F拋物線與橢圓的公共焦點,且橢圓的離心率為

(1)求橢圓的方程;
(2)過拋物線上一點P,作拋物線的切線,切點P在第一象限,如圖,設切線與橢圓相交于不同的兩點A、B,記直線OP,FA,FB的斜率分別為(其中為坐標原點),若,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點M是圓C:上的一點,且軸,為垂足,點滿足,記動點的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標原點,求面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數,使,且.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的右焦點為,離心率為
(1)若,求橢圓的方程。
(2)設直線與橢圓相交于兩點,分別為線段的中點。若坐標原點在以線段為直徑的圓上,且,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,點為橢圓的右頂點, 點,點在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,定點,橢圓短軸的端點是,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點且斜率不為的直線交橢圓兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的中心在坐標原點、對稱軸為坐標軸,且拋物線的焦點是它的一個焦點,又點在該橢圓上.
(1)求橢圓的方程;
(2)若斜率為直線與橢圓交于不同的兩點,當面積的最大值時,求直線的方程.

查看答案和解析>>

同步練習冊答案