分析 (Ⅰ)先求導(dǎo),再根據(jù)f(x)在x=e處取得極值,求出a的值,
(Ⅱ)先求導(dǎo),再分類(lèi)討論,即可求出函數(shù)的單調(diào)區(qū)間.
(Ⅲ)?x1,x2∈(0,e],使得|f(x1)-g(x2)|<9成立,分別求出f(x)min,g(x)max,故由題設(shè)知$\left\{\begin{array}{l}{(1+lna)-(-4-lna)<9}\\{a>\frac{1}{{e}^{2}}}\end{array}\right.$,即可求得實(shí)數(shù)a的取值范圍.
解答 解:(Ⅰ) f′(x)=2ax-$\frac{2}{x}$=$\frac{2a{x}^{2}-2}{x}$ 由已知f′(e)=2ae-$\frac{2}{e}$=0,解得a=$\frac{1}{{e}^{2}}$.
經(jīng)檢驗(yàn),a=$\frac{1}{{e}^{2}}$符合題意.
(Ⅱ) $f'(x)=2ax-\frac{2}{x}=\frac{{2a{x^2}-2}}{x}$
1)當(dāng)a≤0時(shí),f′(x)<0,∴f(x)在(0,e]上是減函數(shù).
2)當(dāng)a>0時(shí),$f'(x)=\frac{{2a(x+\frac{{\sqrt{a}}}{a})(x-\frac{{\sqrt{a}}}{a})}}{x}$
①若$\frac{\sqrt{a}}{a}$<e,即$a>\frac{1}{e^2}$,則f(x)在(0,$\frac{\sqrt{a}}{a}$)上是減函數(shù),在($\frac{\sqrt{a}}{a}$,e]上是增函數(shù);
②若$\frac{\sqrt{a}}{a}$≥e,即0<a≤$\frac{1}{{e}^{2}}$,則f(x)在[0,e]上是減函數(shù).
綜上所述,當(dāng)a≤$\frac{1}{{e}^{2}}$時(shí),f(x)的減區(qū)間是(0,e],
當(dāng)a>$\frac{1}{{a}^{2}}$時(shí),f(x)的減區(qū)間是$(0,\frac{{\sqrt{a}}}{a})$,增區(qū)間是$(\frac{{\sqrt{a}}}{a},e]$.
(Ⅲ)當(dāng)$a>\frac{1}{e^2}$時(shí),由(Ⅱ)知f(x)的最小值是f($\frac{\sqrt{a}}{a}$)=1+lna;
易知g(x)在(0,e]上的最大值是g(e)=-4-lna;
注意到(1+lna)-(-4-lna)=5+2lna>0,
故由題設(shè)知$\left\{\begin{array}{l}{(1+lna)-(-4-lna)<9}\\{a>\frac{1}{{e}^{2}}}\end{array}\right.$,
解得$\frac{1}{{e}^{2}}$<a<e2.
故a的取值范圍是($\frac{1}{{e}^{2}}$,e2)
點(diǎn)評(píng) 本題考查學(xué)生會(huì)利用導(dǎo)求函數(shù)的最值,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握不等式恒成立時(shí)所滿足的條件,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 80 m | B. | 100 m | C. | 50 m | D. | 40 m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0)上是增函數(shù) | B. | (0,+∞)上是增函數(shù) | C. | (-∞,3)上是增函數(shù) | D. | (3,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com