分析 (1)連接圓心O與D,C可得OC,OD,利用勾股定理求出DE即等腰梯形ABCD的高,利用梯形面積公式可得答案.
(2)同理(1)可得y關于x的函數解析式,
(3)根據(2)中的解析式,利用二次函數的性質,配方求解其最大值.
解答 解:(1)連接圓心O與D,C,CD=2,可得△ODC是等邊三角形,
故得等腰梯形ABCD的高h=$\frac{\sqrt{3}}{2}CD$=$\sqrt{3}$.
∴草坪ABCD的面積;$S=\frac{1}{2}(2+4)×\sqrt{3}=3\sqrt{3}$.
(2)同(1)連接圓心O與D,C
可得△ODC是等腰三角形,
故得等腰梯形ABCD的高h=$\sqrt{{2}^{2}-(\frac{x}{2})^{2}}$,
斜邊長為:$\sqrt{{h}^{2}+(\frac{4-x}{2})^{2}}$
∴周長為y=4+x+2×$\sqrt{{h}^{2}+(\frac{4-x}{2})^{2}}$
即y=4+x+2$\sqrt{8-2x}$
定義域為:{x|0<x<4}.
(3)由(2)可得y=4+x+2$\sqrt{8-2x}$,(0<x<4)
化簡可得:y=$-(\sqrt{4-x})^{2}+2\sqrt{2}×\sqrt{4-x}+8$=$-(\sqrt{4-x}-\sqrt{2})^{2}+10$
∴當x=2時,y取得最大值為10.
點評 本題考查了二次函數性質的運用在實際問題的運用能力和計算能力.屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (10,+∞) | B. | (-∞,0)∪(11,+∞) | C. | (-∞,11) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | sinθ=$\frac{3}{5}$ | B. | cos θ=$\frac{4}{5}$ | C. | cotθ=$\frac{3}{4}$ | D. | secθ=$\frac{5}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com