【題目】如圖,在四棱錐中,底面為梯形,平面平面
為側(cè)棱的中點(diǎn),且.
(1)證明: 平面;
(2)若點(diǎn)到平面的距離為,且,求點(diǎn)到平面的距離.
【答案】(1)見解析;(2).
【解析】試題分析:(1)取的中點(diǎn)為,連接,可以證明平面平面,故 平面.(2)根據(jù)已知條件可以證明: 平面且為直角三角形,注意底面是直角梯形,從而可以計算,而是直角三角形且有一個角為,故可以計算的長度,從而可以計算的面積,最后求得體積.
解析:(1)證明:取的中點(diǎn),連接. 為側(cè)棱的中點(diǎn), ,. 平面, 平面,故 平面.又, 四邊形為平行四邊形,則, 平面, 平面,故平面 . , , .
(2), , 平面 , , , ,從而到平面的距離為,因,故.過點(diǎn)作于,則. , ,在中, ,由等積法可得即點(diǎn)到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內(nèi)得到迅速推廣.最近,某機(jī)構(gòu)在某地區(qū)隨機(jī)采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心為,半徑為1的圓.
(1)求曲線, 的直角坐標(biāo)方程;
(2)設(shè)為曲線上的點(diǎn), 為曲線上的點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍;
(2)令,已知函數(shù),若對任意,總存在 ,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)坐標(biāo)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),過點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),直線與直線相交于點(diǎn),試證明:直線與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在市的區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(Ⅱ)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分店,才能使區(qū)平均每個分店的年利潤最大?
參考公式:
, , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點(diǎn)為,以為焦點(diǎn),離心率的橢圓與拋物線的一個交點(diǎn)為;自引直線交拋物線于兩個不同的點(diǎn),設(shè).
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與直線都經(jīng)過點(diǎn).直線與平行,且與橢圓交于兩點(diǎn),直線與軸分別交于兩點(diǎn).
(1)求橢圓的方程;
(2)證明: 為等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,平面平面
為側(cè)棱的中點(diǎn),且.
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com