【題目】【2018貴州遵義市高三上學期第二次聯(lián)考】設拋物線的準線與
軸交于
,拋物線的焦點為
,以
為焦點,離心率
的橢圓與拋物線的一個交點為
;自
引直線交拋物線于
兩個不同的點,設
.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求
的取值范圍.
【答案】(Ⅰ)橢圓的方程為;拋物線的方程是:
.(Ⅱ)
.
【解析】試題分析:
(Ⅰ) 設橢圓的標準方程為,根據橢圓上的點及離心率可得關于
的方程組,求得
可得橢圓的方程;根據橢圓的焦點坐標可得
,進而可得拋物線方程.(Ⅱ)設出直線
的方程,與橢圓方程聯(lián)立消元后根據根與系數的關系及弦長公式可得
,再根據
的范圍,利用函數的有關知識求得
的范圍即可.
試題解析:
(Ⅰ)設橢圓的標準方程為,
由題意得,解得
,
∴橢圓的方程為,
∴點的坐標為
,
∴,
∴拋物線的方程是.
(Ⅱ)由題意得直線的斜率存在,設其方程為
,
由消去x整理得
(*)
∵直線與拋物線交于兩點,
∴.
設,
,
則①,
②.
∵,
,
∴
∴.③
由①②③消去得:
.
∴
,即
,
將代入上式得
,
∵單調遞減,
∴,即
,
∴,
∴,
即的求值范圍為
.
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從A、B兩地區(qū)分別隨機調查了20個用戶,得到用戶對產品的滿意度評分如下:
A地區(qū): | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區(qū): | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據兩組數據完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結論即可):
(Ⅱ)根據用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設兩地區(qū)用戶的評價結果相互獨立,根據所給數據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,拋物線
上在第一象限內的點
到焦點的距離為
,曲線
在點
處的切線交
軸于點
,直線
經過點
且垂直于
軸.
(Ⅰ)求點的坐標;
(Ⅱ)設不經過點和
的動直線
交曲線
于點
和
,交
于點
,若直線
,
,
的斜率依次成等差數列,試問:
是否過定點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在橢圓
上,且橢圓的離心率為
.
(1)求橢圓的方程;
(2)若為橢圓
的右頂點,點
是橢圓
上不同的兩點(均異于
)且滿足直線
與
斜率之積為
.試判斷直線
是否過定點,若是,求出定點坐標,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為拋物線
的焦點,點
為點
關于原點的對稱點,點
在拋物線
上,則下列說法錯誤的是( )
A. 使得為等腰三角形的點
有且僅有4個
B. 使得為直角三角形的點
有且僅有4個
C. 使得的點
有且僅有4個
D. 使得的點
有且僅有4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點為
,過拋物線
上的動點
(除頂點
外)作
的切線
交
軸于點
.過點
作直線
的垂線
(垂足為
)與直線
交于點
.
(Ⅰ)求焦點的坐標;
(Ⅱ)求證:;
(Ⅲ)求線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com