【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則函數(shù)上的所有零點(diǎn)之和為(

A.7B.8C.9D.10

【答案】B

【解析】

由已知可分析出函數(shù)是偶函數(shù),則其零點(diǎn)必然關(guān)于原點(diǎn)對稱,故上所有的零點(diǎn)的和為,則函數(shù)上所有的零點(diǎn)的和,即函數(shù)上所有的零點(diǎn)之和,求出上所有零點(diǎn),可得答案.

解:函數(shù)是定義在上的奇函數(shù),

函數(shù),

函數(shù)是偶函數(shù),

函數(shù)的零點(diǎn)都是以相反數(shù)的形式成對出現(xiàn)的.

函數(shù)上所有的零點(diǎn)的和為,

函數(shù)上所有的零點(diǎn)的和,即函數(shù)上所有的零點(diǎn)之和.

時(shí),,

函數(shù)上的值域?yàn)?/span>,當(dāng)且僅當(dāng)時(shí),

當(dāng)時(shí),

函數(shù)上的值域?yàn)?/span>,

函數(shù)上的值域?yàn)?/span>,

函數(shù)上的值域?yàn)?/span>,當(dāng)且僅當(dāng)時(shí),

函數(shù)上的值域?yàn)?/span>,當(dāng)且僅當(dāng)時(shí),,

上恒成立,上無零點(diǎn),

同理上無零點(diǎn),

依此類推,函數(shù)無零點(diǎn),

綜上函數(shù)上的所有零點(diǎn)之和為8

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為、,若圓Q方程,且圓心Q在橢圓上.

1)求橢圓的方程;

2)已知直線交橢圓AB兩點(diǎn),過直線上一動(dòng)點(diǎn)P作與垂直的直線交圓QCD兩點(diǎn),M為弦CD中點(diǎn),的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)試判斷函數(shù)上的單調(diào)性,并說明理由;

2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)設(shè),若對任意,均存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,則

②若,,則

③若,,則

④若,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)滿足,記的導(dǎo)函數(shù)為,當(dāng)時(shí)恒有.,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)設(shè)P0,-1),直線lC的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)設(shè)P0,-1),直線lC的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是偶函數(shù),.

(1)求的值,并判斷函數(shù)上的單調(diào)性,說明理由;

(2)設(shè),若函數(shù)的圖像有且僅有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;

(3)定義在上的一個(gè)函數(shù),如果存在一個(gè)常數(shù),使得式子對一切大于1的自然數(shù)都成立,則稱函數(shù)為“上的函數(shù)”(其中,).試判斷函數(shù)是否為“上的函數(shù)”,若是,則求出的最小值;若不是,則說明理由.(注:).

查看答案和解析>>

同步練習(xí)冊答案