(2011•鐘祥市模擬)設(shè)函數(shù)f(x)=xn(n≥2,n∈N*
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范圍;
(2)若Fn(x)=f(x-b)-f(x-a),對任意n≥a (2≥a>b>0),證明:F(n)≥n(a-b)(n-b)n-2
分析:(1)利用已知條件,通過Fn(x)=f(x-a)+f(b-x)(0<a<x<b),化簡函數(shù)的表達(dá)式,通過函數(shù)的單調(diào)性,求出函數(shù)Fn(x)的取值范圍;
(2)利用Fn(x)=f(x-b)-f(x-a),x≥a>0,n≥a,說明函數(shù)的單調(diào)性,對任意n≥a (2≥a>b>0),利用作商法累加法,直接證明:F(n)≥n(a-b)(n-b)n-2
解答:解:(1)∵Fn(x)=f (x-a)+f(b-x)=(x-a)n+(b-x)n
Fn(x)=n(x-a)n-1+n(b-x)n-1•(-1)=n[(x-a)n-1-(b-x)n-1]
令Fn(x)=0得(x-a)n-1=(b-x)n-1
∵0<a<x<b∴f (x)=xn(n≥2,n∈N+)為單調(diào)增函數(shù)
∴x=
a+b
2

x (a,
a+b
2
a+b
2
a+b
2
,b)
Fn(x) - 0 +
Fn(x) 單調(diào)減 極小值 單調(diào)增
∴Fn(x)min=Fn
a+b
2
)=(
b-a
2
n+(
b-a
2
n=
(b-a)n
2n-1

又Fn(x)在x=a,x=b處連續(xù)且Fn(a)=Fn(b)=(b-a)n
(b-a)n
2n-1
≤Fn(x)<(b-a)n
即Fn(x)的取值范圍為[
(b-a)n
2n-1
,(b-a)n)…(7分)
(2)證明:∵Fn(x)=f(x-b)-f(x-a)=(x-b)n-(x-a)n
∴Fn(x)=n[(x-b)n-1-(x-a)n-1]
則Fn(n)=n[(n-b)n-1-(n-a)n-1]
∵當(dāng)x≥a>0時(shí)F(x)>0
∴當(dāng)x≥a>0時(shí)Fn(x)是關(guān)于x的增函數(shù)
∴當(dāng)n≥a時(shí),(n+1-b)n-(n+1-a)n>(n-b)n-(n-a)n>0
∴Fn(n+1)=(n+1)[(n+1-b)n-(n+1-a)n]>(n+1)[(n-b)n-(n-a)n]
>(n+1)[(n-b) (n-b)n-1-(n-b) (n-a)n-1]
=(n+1)(n-b)[(n-b)n-1-(n-a)n-1]
=
n+1
n
(n-b)•F(n)
而Fn(n)>0
于是
Fn+1(n+1)
Fn(n)
n+1
n
•(n-b)
而F(2)=2[(2-b)2-1-(2-a)2-1]=2(a-b)
當(dāng)n≥3時(shí)
F(n)=
Fn(n)
Fn+1(n+1)
Fn-1(n-1)
Fn-2(n-2)
F3(3)
F2(2)
•F(2)
n
n-1
n-1
n-2
3
2
•2(a-b)•(n-b)n-2
=n(a-b)(n-b)n-2
即F(n)≥n(a-b)(n-b)n-2…(14分)
點(diǎn)評:本題是中檔題,考查函數(shù)的單調(diào)性,解析式的化簡,函數(shù)的值域的求法,作商法累積法是證明本題的關(guān)鍵,考查發(fā)現(xiàn)問題解決問題的能力,注意轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鐘祥市模擬)定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x)
,且當(dāng)0≤x1<x2≤1時(shí),有f(x1)≤f(x2),則f(
1
2010
)
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鐘祥市模擬)設(shè){an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式SpSq<Sm2成立;
(3)是否存在常數(shù)k和等差數(shù)列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項(xiàng)公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鐘祥市模擬)已知圓C:x2+y2=1,點(diǎn)P(x0,y0)在直線x-y-2=0上,O為坐標(biāo)原點(diǎn),若圓C上存在點(diǎn)Q,使∠OPQ=30°,則x0的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鐘祥市模擬)函數(shù)y=
log
1
3
(2-x)
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鐘祥市模擬)已知,A是拋物線y2=2x上的一動(dòng)點(diǎn),過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點(diǎn),交拋物線于M.N兩點(diǎn),交y軸于B.C兩點(diǎn)
(1)當(dāng)A點(diǎn)坐標(biāo)為(8,4)時(shí),求直線EF的方程;
(2)當(dāng)A點(diǎn)坐標(biāo)為(2,2)時(shí),求直線MN的方程;
(3)當(dāng)A點(diǎn)的橫坐標(biāo)大于2時(shí),求△ABC面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案