【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬(wàn)人受災(zāi),5.6萬(wàn)人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶(hù)居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成,,,,五組,并作出如圖頻率分布直方圖:
(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶(hù)居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過(guò)4000元的居民中隨機(jī)抽取2戶(hù)進(jìn)行捐款援助,設(shè)抽出損失超過(guò)8000元的居民為戶(hù),求的分布列和數(shù)學(xué)期望;
(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶(hù)居民捐款情況如圖,根據(jù)圖表格中所給數(shù)據(jù),分別求,,,,,,的值,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過(guò)4000元 | 經(jīng)濟(jì)損失超過(guò)4000元 | 合計(jì) | |
捐款超過(guò)500元 | |||
捐款不超過(guò)500元 | |||
合計(jì) |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:臨界值表參考公式:,.
【答案】(1)(2)(3)有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
【解析】
試題分析:(Ⅰ)根據(jù)頻率分布直方圖,即可估計(jì)小區(qū)平均每戶(hù)居民的平均損失;
(Ⅱ)由頻率分布直方圖可得,損失不少于6000元的居民共有(0.00003+0.00003)×2000×50=6戶(hù),損失為6000~8000元的居民共有0.00003×2000×50=3戶(hù),損失不少于8000元的居民共有0.00003×2000×50=3戶(hù),即可求這兩戶(hù)在同一分組的概率;
(Ⅲ)由頻率分布直方圖及所給2×2列聯(lián)表得b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并求出K2,與臨界值比較,即可得出結(jié)論.
試題解析:(1)記每戶(hù)居民的平均損失為元,
則
.
(2)由頻率分布直方圖,可得超過(guò)4000元的居民共有戶(hù),損失超過(guò)8000元的居民共有戶(hù),
因此的可能值為0,1,2,
,,,
的分布列為:
0 | 1 | 2 | |
.
(3)解得,,,,,,,
,
所以有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且滿(mǎn)足a2+c2-b2=ac.
(1)求角B的大。
(2)若2bcos A=(ccosA+acosC),BC邊上的中線(xiàn)AM的長(zhǎng)為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)圖象上不同兩點(diǎn),處切線(xiàn)的斜率分別是,規(guī)定(為線(xiàn)段的長(zhǎng)度)叫做曲線(xiàn)在點(diǎn)與之間的“平方彎曲度”,給出以下命題:
①函數(shù)圖象上兩點(diǎn)與的橫坐標(biāo)分別為1和2,則;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“平方彎曲度”為常數(shù);
③設(shè)點(diǎn),是拋物線(xiàn)上不同的兩點(diǎn),則;
④設(shè)曲線(xiàn)(是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn),,且,則的最大值為.
其中真命題的序號(hào)為__________(將所有真命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:Sn=+-1,且an>0,n∈N*.
(1)求a1,a2,a3,并猜想{an}的通項(xiàng)公式;
(2)證明(1)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2ax-x2-3ln x,其中a∈R,為常數(shù).
(1)若f(x)在x∈[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E,F分別是棱AA′,CC′的中點(diǎn),過(guò)直線(xiàn)EF的平面分別與棱BB′、DD′分別交于M,N兩點(diǎn),設(shè)BM=x,x∈[0,1],給出以下四個(gè)結(jié)論:
①平面MENF⊥平面BDD′B′;
②直線(xiàn)AC∥平面MENF始終成立;
③四邊形MENF周長(zhǎng)L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積V=h(x)為常數(shù);
以上結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(,且).
(1)當(dāng)時(shí),若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;
(2)若,設(shè) ,是的導(dǎo)函數(shù),判斷的零點(diǎn)個(gè)數(shù),并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)若為奇函數(shù),求實(shí)數(shù)的值;
(3)若關(guān)于的方程在區(qū)間上無(wú)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)的直線(xiàn)與橢圓交于, 兩點(diǎn),求與的面積之差的絕對(duì)值的最大值.(為坐標(biāo)原點(diǎn))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com