(2013•牡丹江一模)設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,右準線 l與兩條漸近線交于P,Q兩點,如果△PQF是等邊三角形,則雙曲線的離心率e的值為( 。
分析:依題意,作出圖形,利用等邊三角形PQF中,tan∠PFO=
MP
MF
=tan30°可求得c=2a,從而可求得答案.
解答:解:依題意,如圖:
則P(
a2
c
ab
c
),Q(
a2
c
,-
ab
c
),F(xiàn)(c,0),
∵△PQF是等邊三角形,
∴tan∠PFO=
MP
MF
=
ab
c
c-
a2
c
ab
b2
=
a
b
=tan30°=
3
3
,
a2
b2
=
1
3
,
∴b2=c2-a2=3a2,
∴c=2a,
∴e=
c
a
=2.即雙曲線的離心率e=2.
故選C.
點評:本題考查雙曲線的簡單性質(zhì),利用等邊三角形PQF中,tan∠PFO=
MP
MF
=tan30°求得c=2a是關(guān)鍵,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)在球O內(nèi)任取一點P,使得P點在球O的內(nèi)接正方體中的概率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)復(fù)數(shù) (1+i)z=i( i為虛數(shù)單位),則
.
z
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=
1+1nx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點,求實數(shù)a的取值范圍;
(2)知果當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍;
(3)求證:[(n+1)!]2>(n+1)en-2+
2
n+1
,這里n∈N*,(n+1)!=1×2×3×…×(n+1),e為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-a(x-1),其中a∈R,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•牡丹江一模)已知四棱錐P-ABCD的三視圖如圖所示,則四棱錐P-ABCD的四個側(cè)面中面積最大的是( 。

查看答案和解析>>

同步練習冊答案