設(shè)x=
3a+
a2+b3
+
3a-
a2+b3
,那么x3+3bx-2a=
 
考點:根式與分數(shù)指數(shù)冪的互化及其化簡運算
專題:函數(shù)的性質(zhì)及應用
分析:直接代入x的值,化簡求解即可.
解答: 解:因為x=
3a+
a2+b3
+
3a-
a2+b3
,
所以x3+3bx-2a=a+
a2+b3
+a-
a2+b3
+3
3(a+
a2+b3
)2(a-
a2+b3
)

+3
3(a-
a2+b3
)
2
(a+
a2+b3
)
+3b
3a+
a2+b3
+3b
3a-
a2+b3
-2a
=0
故答案為:0.
點評:本題考查根式與分數(shù)指數(shù)冪的互化及其化簡運算,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義域為R的函數(shù)f(x)=f(x+2k)(k∈Z)及f(-x)=-f(x),且當x∈(0,1)時,f(x)=
2x
4x+1

(1)求f(x)在[2k-1,2k+1](k∈Z)上的解析式;
(2)求證:f(x)在x∈(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
ln(x-2)(x>2)
2x+
a
0
3t2dt(x≤2)
,若f(f(3))=9,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}和{bn}都是等差數(shù)列,其前n項和分別為Sn和Tn,且
Sn
Tn
=
n+1
2n+1
,則
a5
b3
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(a-b)2
(a<b)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+1,x>0
-x2-4x
+a,x≤0
在點(1,2)處的切線與f(x)的圖象有三個公共點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,△ABC的三個頂點為A(3,-1),B(-1,1),C(1,3),則由△ABC圍成的區(qū)域所表示的二元一次不等式組為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=kx-1始終與線段y=1(-1<x<1)相交,則實數(shù)k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}是等差數(shù)列,{bn}是等比數(shù)列,記{an},{bn}的前n項和分別為Sn,Tn.若a3=b3,a4=b4,且
S5-S3
T4-T2
=5,則
a5+a3
b5+b3
=
 

查看答案和解析>>

同步練習冊答案