14.將800個個體編號為001~800,然后利用系統(tǒng)抽樣的方法從中抽取20個個體作為樣本,則在編號為121~400的個體中應(yīng)抽取的個體數(shù)為( 。
A.10B.9C.8D.7

分析 根據(jù)題意,求出系統(tǒng)抽樣的分組組距,再求編號為121~400的個體中應(yīng)抽取的個體數(shù)即可.

解答 解:把這800個個體編上001~800的號碼,分成20組,
則組距為$\frac{800}{20}$=40;
所以編號為121~400的個體中應(yīng)抽取的個體數(shù)為
$\frac{400-121+1}{40}$=7.
故選:D.

點評 本題考查了系統(tǒng)抽樣的特征與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn,其中Sn是數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是首項為$\frac{2}{3}$,公比為$-\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}的通項公式;
(2)若bn=n,a2=3,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,設(shè)${c_n}=\frac{a_n}{b_n}$,求證:數(shù)列{cn}中的任意一項總可以表示成該數(shù)列其他兩項之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某河流水位X(單位:米)的頻率分布直方圖如圖:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.

(1)求未來三年,至多有1年河流水位X∈[27,31)的概率(結(jié)果用分數(shù)表示);
(2)該河流對沿河A企業(yè)影響如下:當X∈[23,27)時,不會造成影響;當X∈[27,31)時,損失10000元;當X∈[31,35)時,損失60000元,為減少損失,現(xiàn)有種應(yīng)對方案:
方案一:防御35米的最高水位,需要工程費用3800元;
方案二:防御不超過31米的水位,需要工程費用2000元;
方案三:不采取措施;
試比較哪種方案較好,并請說理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知命題“?x∈[0,1],使2x+a<0”為假命題,則a的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中既是奇函數(shù)又是周期函數(shù)的是( 。
A.y=x3B.y=cos2xC.y=sin3xD.$y=tan(2x+\frac{π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow a=(-1,1)$,|$\overrightarrow b|=(\overrightarrow a+\overrightarrow b)•(\overrightarrow a-3\overrightarrow b)=1$,則<$\overrightarrow a,\overrightarrow b>$等于(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:函數(shù)f (x)=|cosx|的最小正周期為2π;命題q:函數(shù)y=x3+sinx的圖象關(guān)于原點中心對稱,則下列命題是真命題的是( 。
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若A,B,C為圓O:x2+y2=1上的三點,且AB=1,BC=2,則$\overrightarrow{BO}$•$\overrightarrow{AC}$=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求直線l和圓C的極坐標方程;
(2)射線OM:θ=α(其中$0<a<\frac{π}{2}$)與圓C交于O、P兩點,與直線l交于點M,射線ON:$θ=α+\frac{π}{2}$與圓C交于O、Q兩點,與直線l交于點N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案