已知中心在原點(diǎn)的橢圓與雙曲線(xiàn)有公共焦點(diǎn),左、右焦點(diǎn)分別為,且兩條曲線(xiàn)在第一象限的交點(diǎn)為,是以為底邊的等腰三角形,若,橢圓與雙曲線(xiàn)的離心率分別為,則的取值范圍是(   )

A.(1,)       B.(,)     C.()      D.(,+

 

【答案】

B

【解析】

試題分析:設(shè)橢圓與雙曲線(xiàn)的半焦距為c,PF1=r1,PF2=r2

由題意知r1=10,r2=2c,且r1>r2,2r2>r1,∴2c<10,2c+2c>10,<c<5,。

∴e2==;

e1=

=+1==>,故選B。

考點(diǎn):本題主要考查橢圓、雙曲線(xiàn)的幾何性質(zhì),不等式的性質(zhì)。

點(diǎn)評(píng):中檔題,首先結(jié)合圖形分析,確定得到幾何量之間的關(guān)系,進(jìn)一步確定c的范圍。確定的范圍過(guò)程中,利用了不等式的性質(zhì)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為(0,
2
),且過(guò)點(diǎn)A(1,
2
)
,過(guò)A作傾斜角互補(bǔ)的兩條直線(xiàn),它們與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B和點(diǎn)C.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:直線(xiàn)BC的斜率為定值,并求這個(gè)定值.
(3)求三角形ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓C的一個(gè)焦點(diǎn)F(4,0),長(zhǎng)軸端點(diǎn)到較近焦點(diǎn)的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點(diǎn).
(1)求橢圓的方程;
(2)若x1+x2=8,在x軸上是否存在一點(diǎn)D,使|
DA
|=|
DB
|若存在,求出D點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東)已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于
1
2
,則C的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓C:
x2
a2
+
y2
b2
=1的焦點(diǎn)為F1(0,3),M(x,4)(x>0)橢圓C上一點(diǎn),△MOF1的面積為
3
2

(1)求橢圓C的方程.
(2)是否存在平行于OM的直線(xiàn)l,使得直線(xiàn)l與橢圓C相較于A,B兩點(diǎn),且以線(xiàn)段AB為直徑的圓恰好經(jīng)過(guò)原點(diǎn)?若存在,求出直線(xiàn)l的方程,請(qǐng)說(shuō)明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(
15
,0),直線(xiàn)y=x與橢圓的一個(gè)交點(diǎn)的橫坐標(biāo)為2,則橢圓方程為( 。
A、
x2
16
+y2=1
B、x2+
y2
16
=1
C、
x2
20
+
y2
5
=1
D、
x2
5
+
y2
20
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案