關(guān)于平面向量
a
,
b
c
.有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c
;
②若
a
=(1,k),
b
=(-2,6)
,
a
b
,則k=-3;
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
其中真命題的序號為
②③
②③
.(寫出所有真命題的序號)
分析:通過舉反例可得①不正確,根據(jù)兩個(gè)向量共線的性質(zhì)可得②正確,由兩個(gè)向量的加減法的法則,以及其幾何意義,向量的模的意義,可得③不正確,從而得出結(jié)論.
解答:解:①不正確,當(dāng)
a
=
0
時(shí),由
a
b
=
a
c
,可得
b
c
為任意向量.
②正確,若
a
=(1,k),
b
=(-2,b)
,
a
b
,則有 1×6-(-2)k=0,即 k=-3.
③正確,如圖,在△ABC中,設(shè)
AB
=
a
,
AC
=
b
,
CB
=
a
-
b
,由|
a
|=|
b
|=|
a
-
b
|,可知△ABC為等邊三角形.
由平行四邊形法則作出向量
a
+
b
=
AD
,此時(shí)
a
a
+
b
的夾角為30°.
故答案為 ②③.
點(diǎn)評:本題主要考查兩個(gè)向量共線的性質(zhì),兩個(gè)向量的加減法的法則,以及其幾何意義,向量的模的定義,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
,
c
,有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
b
,
c
,有下列命題:
①(
a
b
c
-(
c
a
b
=0
②|
a
|-|
b
|<|
a
-
b
|;
③(
b
c
a
-(
c
a
b
不與
c
垂直;
④非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
-
b
的夾角為60°.
其中真命題的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
,
c
,有下列四個(gè)命題( 。
①若
a
b
,
.
a
0
則?λ∈R,使得
b
a

.
a
.
b
=0,則
a
=
o
b
=
0

③若
.
a
=(1,k),
b
=(-2,6),
.
a
b
則,k=-3
④若
a
b
=
a
c
 則
a
⊥(
b
-
c
)
,其中正確命題序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
,
c
.有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6)
,
a
b
,則k=-3;
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
其中真命題的序號為
②③
②③
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
c
.有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的個(gè)數(shù)有(  )

查看答案和解析>>

同步練習(xí)冊答案