15.6名同學(xué)坐成一排,要求某3人必須相鄰,一共有多少種坐法?若某2人不能相鄰,一共有多少種不同的站法?

分析 根據(jù)6名同學(xué)坐成一排,要求某3人必須相鄰,利用捆綁法,6名同學(xué)坐成一排,某2人不能相鄰,利用插空法進(jìn)行求解即可.

解答 解:∵6名同學(xué)坐成一排,要求某3人必須相鄰,
∴坐法有${C}_{6}^{3}$${A}_{4}^{4}$=480,即共有480種坐法;
∵6名同學(xué)坐成一排,某2人不能相鄰,
∴有${C}_{6}^{2}$${A}_{2}^{2}$${A}_{4}^{4}$${C}_{5}^{2}$=7200種,

點(diǎn)評(píng) 本題考查計(jì)數(shù)原理的應(yīng)用,考查學(xué)生的計(jì)數(shù)能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在函數(shù)y=lnx的圖象上取點(diǎn)Pn(n,ln n)(n∈N*),記線段PnPn+1的斜率為kn,求證:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某三棱錐的三視圖如圖所示,則該三棱錐體積是1,四個(gè)面的面積中最大的是$\frac{3\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)a∈R,函數(shù)f(x)=ax2-lnx,g(x)=ex-ax.
(1)若函數(shù)h(x)=f(x)+2x,討論h(x)的單調(diào)性.
(2)若f(x)•g(x)>0對(duì)x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.判斷下列對(duì)應(yīng)是否是映射,是否是函數(shù).
(1)A=N,B=N*,f:x→y=|x-1|,x∈A,y∈B;
(2)A=R,B={1,2},f:x→y=$\left\{\begin{array}{l}{1(x≥0)}\\{2(x<0)}\end{array}\right.$;
(3)A={平面M內(nèi)的三角形},B{平面M內(nèi)的圓},對(duì)應(yīng)法則是“作三角形的外接圓”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在實(shí)數(shù)集上規(guī)定運(yùn)算“*”滿足:1*1=2,1*(n+1)-1*n=3,則1*2004等于( 。
A.2004B.2006C.4008D.6011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,若直線l:y-1=k(x-$\sqrt{3}$)不經(jīng)過第四象限,則實(shí)數(shù)k的取值范圍是[0,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某地對(duì)5家商場(chǎng)的某商品的一天銷售量及其價(jià)格進(jìn)行調(diào)查,5家商場(chǎng)的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
x99.51010.511
y111086m
由表中數(shù)據(jù),求得y關(guān)于x的線性回歸方程為$\hat y$=-3.2x+40,則表中的實(shí)數(shù)m=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.學(xué)校為了解高二年級(jí)1201名學(xué)生對(duì)某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為( 。
A.10B.20C.30D.40

查看答案和解析>>

同步練習(xí)冊(cè)答案