已知函數(shù)是首項(xiàng)為2,公比為的等比數(shù)列,數(shù)列是首項(xiàng)為-2,第三項(xiàng)為2的等差數(shù)列.
(1)求數(shù)列的通項(xiàng)式.
(2)求數(shù)列的前項(xiàng)和.

(1) ,bn=2n-4-; (2)Tn=n2-3n-4+.

解析試題分析:(1)直接用等比數(shù)列等差數(shù)列即可求得數(shù)列{}{bn}的通項(xiàng)公式.
(2)數(shù)列是一個等差數(shù)列與一個等比數(shù)列的和,故其求和采用分組求和的方法.
試題解析:(1)∵數(shù)列{}是首項(xiàng)=2,公比q=的等比數(shù)列,
∴an=2·n-1=22-n,       3分
依題意得數(shù)列{bn+an}的公差d==2,
∴bn+an=-2+2(n-1)=2n-4,
∴bn=2n-4-22-n        6分
(2)設(shè)Sn的前n項(xiàng)和,由(1)得 Sn=4        9分
設(shè)數(shù)列{bn+an}的前n項(xiàng)和為Pn       則 Pn=n(n-3),
∴Tn=Pn-Sn=n(n-3)-4=n2-3n-4+22-n    12分
考點(diǎn):等差數(shù)列等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列{an}中,a1=1,且log3an,log3an+1是方程x2(2n1)x+bn=0的兩個實(shí)根.
(1)求a2,b1;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若,項(xiàng)和, ,當(dāng)時,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項(xiàng)都是正數(shù),且對任意都有,其中為數(shù)列的前項(xiàng)和.
(1)求、;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),對任意的,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
求數(shù)列前n項(xiàng)的和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足,.?dāng)?shù)列滿足為數(shù)列的前項(xiàng)和.
(1)求;
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

等差數(shù)列中,,若在每相鄰兩項(xiàng)之間各插入一個數(shù),使之成為等差數(shù)列,
那么新的等差數(shù)列的公差是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知在等差數(shù)列中,的等差中項(xiàng)為的等差中項(xiàng)為,則數(shù)列的通項(xiàng)公式(   )

A. B.-1 C.+1 D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知等比數(shù)列中,各項(xiàng)都是正數(shù),且成等差數(shù)列,則等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在數(shù)列中,如果存在非零的常數(shù),使對于任意正整數(shù)均成立,就稱數(shù)列為周期數(shù)列,其中叫做數(shù)列的周期. 已知數(shù)列滿足
,若,當(dāng)數(shù)列的周期為時,則數(shù)列的前2012項(xiàng)的和為             

查看答案和解析>>

同步練習(xí)冊答案