分析 (Ⅰ)利用拋物線的定義,得出軌跡方程;
(Ⅱ)聯(lián)立直線MN方程與C的軌跡方程,得出M,N的坐標(biāo)關(guān)系,代入斜率公式化簡(jiǎn)|k1-k2|,利用二次函數(shù)的性質(zhì)求出最小值.
解答 解:(Ⅰ)∵點(diǎn)P到直線y=-3的距離比到點(diǎn)F(0,1)的距離大2,
∴點(diǎn)P到直線y=-1的距離等于到點(diǎn)F(0,1)的距離,
∴點(diǎn)P的軌跡是以點(diǎn)F(0,1)為焦點(diǎn)的拋物線,方程為x2=4y.
(Ⅱ)設(shè)過點(diǎn)B的直線方程為y=k(x-4)+5,M(x1,$\frac{{{x}_{1}}^{2}}{4}$),N(x2,$\frac{{{x}_{2}}^{2}}{4}$).
聯(lián)立拋物線,得x2-4kx+16x-20=0,
則x1+x2=4k,x1x2=16k-20,
∵k1=$\frac{{x}_{1}-4}{4}$,k2=$\frac{{x}_{2}-4}{4}$.
∴|k1-k2|=$\frac{1}{4}$|x1-x2|=$\sqrt{{k}^{2}-4k+5}$=$\sqrt{(k-2)^{2}+1}$≥1.
∴當(dāng)k=2時(shí),|k1-k2|取得最小值1.
點(diǎn)評(píng) 本題考查了軌跡方程的求解,直線與拋物線的位置關(guān)系,直線的斜率公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ① |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{17}$ | B. | 1 | C. | $\sqrt{7}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com