已知函數(shù)f(x)=x3+2x2-ax,對于任意實數(shù)x恒有f′(x)≥2x2+2x-4,
(1)求實數(shù)a的取值范圍;
(2)當a最大時,關于x的方程f(x)=k|x|恰有兩個不同的根,求實數(shù)k的取值范圍.

解:(1)求導函數(shù)得:f′(x)=3x2+4x-a,
對于任意實數(shù)x恒有f′(x)≥2x2+2x-4,
即3x2+4x-a≥2x2+2x-4在R上恒成立,
即x2+2x-a+4≥0在R上恒成立,
∴△=4+4a-16≤0
∴a≤3.
(2)當a=3時,f(x)=x3+2x2-3x=x(x+3)(x-1),關于x的方程f(x)=k|x|為x(x+3)(x-1)=k|x|
易知其中一個根必然是x=0,所以當x=0時方程有一個根.
要使關于x的方程f(x)=k|x|恰有兩個不同的根,只需要與y=k有一個交點
由圖可得k的取值范圍為k>4,或k<-3.
分析:(1)求導函數(shù)得:f′(x)=3x2+4x-a,對于任意實數(shù)x恒有f′(x)≥2x2+2x-4,即3x2+4x-a≥2x2+2x-4在R上恒成立,即x2+2x-a+4≥0在R上恒成立,從而可求實數(shù)a的取值范圍;
(2)當a=3時,f(x)=x3+2x2-3x=x(x+3)(x-1),關于x的方程f(x)=k|x|為x(x+3)(x-1)=k|x|,易知其中一個根必然是x=0,所以當x=0時方程有一個根,要使關于x的方程f(x)=k|x|恰有兩個不同的根,只需要與y=k有一個交點,故可求k的取值范圍.
點評:本題重點考查導數(shù)知識的運用,考查恒成立問題,考查方程根的討論,考查數(shù)形結合的數(shù)學思想,綜合性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案