2.函數(shù)f(x)=lg(1-$\sqrt{x-2}}$)的定義域為(  )
A.(2,3)B.(2,3]C.[2,3)D.[2,3]

分析 根據(jù)對數(shù)函數(shù)以及二次根式的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{1-\sqrt{x-2}>0}\\{x-2≥0}\end{array}\right.$,
解得:2≤x<3,
故選:C.

點評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)以及二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-(a-1)x+5在區(qū)間($\frac{1}{2}$,1)上是增函數(shù),求:
(1)實數(shù)a的取值范圍;
(2)f(2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.1+3+5+…+(2n+1)=(n+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)ω>0,若函數(shù)f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上單調(diào)遞增,則ω的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.(1,$\frac{3}{2}$]C.[0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若sin(π+α)=$\frac{3}{5}$,α是第三象限的角,則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是三個單位向量,且$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$>0,則對于任意的正實數(shù)t,|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|的最小值為$\frac{1}{2}$,則$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{8}$或-$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{2x-1}{x+1}$.
(1)判斷并證明函數(shù)f(x)在[0,+∞)的單調(diào)性;
(2)若x∈[1,m]時函數(shù)f(x)的最大值與最小值的差為$\frac{1}{2}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線$\frac{{x}^{2}}{n}$-y2=1(n>1)的兩焦點為F1,F(xiàn)2,點P在雙曲線上,且滿足PF1+PF2=2$\sqrt{n+2}$,則△PF1F2的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=loga(3-ax)(a>0,a≠1)
(1)當(dāng)a=3時,求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)-loga(3+ax),請判定g(x)的奇偶性;
(3)是否存在實數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案