(2013•天津)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知bsinA=3csinB,a=3,cosB=
2
3

(Ⅰ) 求b的值;
(Ⅱ) 求sin(2B-
π
3
)
的值.
分析:(Ⅰ) 直接利用正弦定理推出bsinA=asinB,結(jié)合已知條件求出c,利用余弦定理直接求b的值;
(Ⅱ) 利用(Ⅰ)求出B的正弦函數(shù)值,然后利用二倍角公式求得正弦、余弦函數(shù)值,利用兩角差的正弦函數(shù)直接求解sin(2B-
π
3
)
的值.
解答:解:(Ⅰ)在△ABC中,有正弦定理
a
sinA
=
b
sinB
,可得bsinA=asinB,
又bsinA=3csinB,可得a=3c,又a=3,所以c=1.
由余弦定理可知:b2=a2+c2-2accosB,cosB=
2
3
,
即b2=32+12-2×3×cosB,
可得b=
6

(Ⅱ)由cosB=
2
3
,可得sinB=
5
3
,
所以cos2B=2cos2B-1=-
1
9

sin2B=2sinBcosB=
4
5
9
,
所以sin(2B-
π
3
)
=sin2Bcos
π
3
-sin
π
3
cos2B
=
4
5
9
×
1
2
-(-
1
9
3
2
=
4
5
+
3
18
點評:本題考查余弦定理,正弦定理以及二倍角的正弦函數(shù)與余弦函數(shù),兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)在△ABC中,∠ABC=
π
4
,AB=
2
,BC=3
,則sin∠BAC=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號 A1 A2 A3 A4 A5
質(zhì)量指標(biāo)(x,y,z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1)
產(chǎn)品編號 A6 A7 A8 A9 A10
質(zhì)量指標(biāo)(x,y,z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,
(i) 用產(chǎn)品編號列出所有可能的結(jié)果;
(ii)設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)在平行四邊形ABCD中,AD=1,∠BAD=60°,E為CD的中點.若
AC
BE
=1
,則AB的長為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津模擬)已知函數(shù)f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013
,設(shè)函數(shù)F(x)=f(x+3)•g(x-4),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為(  )

查看答案和解析>>

同步練習(xí)冊答案