已知,橢圓C過(guò)點(diǎn),兩個(gè)焦點(diǎn)為.
(1)求橢圓C的方程;
(2)是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個(gè)定值.
(1);(2).
解析試題分析:(1)由橢圓的定義來(lái)求解;(2)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,求解點(diǎn)的坐標(biāo),同理可求點(diǎn)的坐標(biāo),化簡(jiǎn)求的斜率即可.
試題解析:(1)由題意,由定義
所以,∴橢圓方程為. 4分
(2)設(shè)直線方程為:,代入
得 6分
設(shè),因?yàn)辄c(diǎn)在橢圓上,
所以 7分
又直線的斜率與的斜率互為相反數(shù),在上式中以代,
可得 9分
所以直線的斜率
, 11分
即直線的斜率為定值,其值為. 12分
考點(diǎn):1.橢圓的定義;2,直線與橢圓的位置關(guān)系;3.定值問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是拋物線上的點(diǎn),是的焦點(diǎn), 以為直徑的圓與軸的另一個(gè)交點(diǎn)為.
(Ⅰ)求與的方程;
(Ⅱ)過(guò)點(diǎn)且斜率大于零的直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),的面積為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足.
(Ⅰ)若的中垂線經(jīng)過(guò)點(diǎn),求直線的方程;
(Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的長(zhǎng)軸長(zhǎng)為4,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點(diǎn),若,點(diǎn)為線段的中點(diǎn),、兩點(diǎn)的坐標(biāo)分別為、,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與軸的焦點(diǎn),過(guò)P的直線與拋物線C交于A、B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線上時(shí),求直線的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時(shí),求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過(guò)點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C長(zhǎng)軸的兩個(gè)頂點(diǎn)為A(-2,0),B(2,0),且其離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線x=2上不同于點(diǎn)B的任意一點(diǎn),直線AN與橢圓C交于點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),求證:直線NM經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)a變化時(shí),求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過(guò)F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標(biāo)原點(diǎn),求證:.
查看答案和解析>>