精英家教網 > 高中數學 > 題目詳情
18.已知數列{an}滿足:${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,函數f(x)=ax3+btanx,若f(a4)=9,則f(a1)+f(a2017)的值是-18.

分析 函數f(x)=ax3+btanx,可得f(-x)+f(x)=0.由${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,可得:an+6=an.即可得出.

解答 解:∵函數f(x)=ax3+btanx,∴f(-x)+f(x)=-ax3-btanx+ax3+btanx=0.
∵${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,∴a3=2-1=1,
同理可得a4=-1,a5=-2,a6=-1,a7=1,a8=1,….
∴an+6=an
∴a2017=a6×336+1=a1
若f(a4)=9,∴f(-1)=9.∴f(1)=-9
則f(a1)+f(a2017)=2f(a1)=-18.
故答案為:-18.

點評 本題考查了函數的奇偶性、數列的周期性、數列遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.正項等比數列{an}中,a6=a5+2a4,若存在兩項am,an使得$\sqrt{{a_m}{a_n}}$=4a1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值是( 。
A.$\frac{{3+2\sqrt{2}}}{6}$B.1C.$\frac{11}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,圓C1的極坐標方程是ρ2+2ρcosθ=0,圓C2的參數方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數).
(Ⅰ)求C1和C2的交點的極坐標;
(Ⅱ)直線l經過C1和C2的交點,且垂直于公共弦,求直線l的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.設實數x,y滿足x2=4y,則$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$的最小值是2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.若直線y=b與函數f(x)=$\frac{1}{3}$x3-4x+4的圖象有3個交點,則b的取值范圍(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.一奶制品加工廠以牛奶為原料分別在甲、乙兩類設備上加工生產A、B兩種奶制品,如用甲類設備加工一桶牛奶,需耗電12千瓦時,可得3千克A制品;如用乙類設備加工一桶牛奶,需耗電8千瓦時,可得4千克B制品.根據市場需求,生產的A、B兩種奶制品能全部售出,每千克A獲利a元,每千克B獲利b元.現在加工廠每天最多能得到50桶牛奶,每天兩類設備工作耗電的總和不得超過480千瓦時,并且甲類設備每天至多能加工102千克A制品,乙類設備的加工能力沒有限制.其生產方案是:每天用x桶牛奶生產A制品,用y桶牛奶生產B制品(為了使問題研究簡化,x,y可以不為整數).
(Ⅰ)若a=24,b=16,試為工廠制定一個最佳生產方案(記此最佳生產方案為F0),即x,y分別為何值時,使工廠每天的獲利最大,并求出該最大值;
(Ⅱ) 隨著季節(jié)的變換和市場的變化,以及對原配方的改進,市場價格也發(fā)生變化,獲利也隨市場波動.若a=24(1+4λ),b=16(1+5λ-5λ2)(這里0<λ<1),其它條件不變,試求λ的取值范圍,使工廠當且僅當采。á瘢┲械纳a方案F0時當天獲利才能最大.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.設F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過點F2的直線交雙曲線右支于A、B兩點.若AF2⊥AF1,且|BF2|=2|AF1|,則雙曲線的離心率為( 。
A.$\frac{\sqrt{17}}{3}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{13}$D.$\frac{\sqrt{58}}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知點P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上一點,F1,F2為雙曲線的左、右焦點,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O為坐標原點),且|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,則雙曲線離心率為(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{6}$+1C.$\sqrt{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.拋物線C:y2=2px(p>0)的準線為l,焦點為F,圓M的圓心在x軸的正半軸上,圓M與y軸相切,過原點O作傾斜角為$\frac{π}{3}$的直線m,交直線l于點A,交圓M于不同的兩點O、B,且|AO|=|BO|=2,若P為拋物線C上的動點,則$\overrightarrow{PM}•\overrightarrow{PF}$的最小值為( 。
A.-2B.2C.$\frac{7}{4}$D.3

查看答案和解析>>

同步練習冊答案