A. | -1 | B. | 0 | C. | 2 | D. | 4 |
分析 由已知中定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{3}{4}$,0)成中心對(duì)稱,對(duì)任意實(shí)數(shù)x都有f(x)=-f(x+$\frac{3}{2}$),我們易判斷出函數(shù)f(x)是周期為3的周期函數(shù),進(jìn)而由f($\frac{1}{2}$)=-2,f(0)=-4,我們求出一個(gè)周期內(nèi)函數(shù)的值,進(jìn)而利用分組求和法,得到答案.
解答 解:∵f(x)+f(x+$\frac{3}{2}$)=0,
∴f(x+$\frac{3}{2}$)=-f(x),
則f(x+3)=-f(x+$\frac{3}{2}$)=f(x),
所以f(x)是周期為3的周期函數(shù),
則f(2)=-f($\frac{1}{2}$)=2,
∵函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{3}{4}$,0)成中心對(duì)稱,
∴f(1)=-f(-$\frac{5}{2}$)=-f($\frac{1}{2}$)=2,
∵f(0)=-4,
∴f(1)+f(2)+f(3)=2+2-4=0,
∴f(1)+f(2)+…+f(2014)=f(1)=2,
故選:C.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的周期性,其中根據(jù)已知中對(duì)任意實(shí)數(shù)x都有f(x)=-f(x+$\frac{3}{2}$),判斷出函數(shù)的周期性,是解答本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | $({\root{3}{3},+∞})$ | C. | $({\root{3}{3},3})$ | D. | $({0,\root{3}{3}})∪({3,+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {-3} | C. | {-3,2} | D. | {-2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com