求經(jīng)過(guò)兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,且垂直于直線l3:x-2y-1=0直線l的方程.
【答案】分析:聯(lián)立兩個(gè)直線解析式先求出l1和l2的交點(diǎn)坐標(biāo),然后利用直線與直線l3垂直,根據(jù)斜率乘積為-1得到直線l的斜率,寫(xiě)出直線l方程即可.
解答:解:解方程組,得交點(diǎn)(-2,2).
又由l⊥l3,且k3=,
因?yàn)閮芍本垂直得斜率乘積為-1,
得到kl=-2,
∴直線l的方程為y-2=-2(x+2),即2x+y+2=0.
點(diǎn)評(píng):考查學(xué)生求兩條直線交點(diǎn)坐標(biāo)的方法,會(huì)利用兩直線垂直時(shí)斜率乘積等于-1解題的能力,會(huì)根據(jù)一個(gè)點(diǎn)和斜率寫(xiě)出直線一般式方程.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,且垂直于直線l3:x-2y-1=0直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩條直線l1:x+y-4=0和l2:x-y+2=0的交點(diǎn),且分別與直線2x-y-1=0
(1)平行,
(2)垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,且垂直于直線l3:x-y-1=0直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求經(jīng)過(guò)兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,且垂直于直線l3:x-2y-1=0的直線l的方程.
(2)求經(jīng)過(guò)點(diǎn)A(-1,4)、B(3,2)且圓心在y軸上的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案