7.若sinθ+cosθ=k,且sin3θ+cos3θ<0,求k的取值范圍.

分析 由平方關(guān)系、二倍角的正弦公式化簡sinθ+cosθ=k,求出sinθcosθ的表達式,利用立方和公式化簡sin3θ+cos3θ,根據(jù)sin3θ+cos3θ<0列出不等式并化簡,由兩角和的正弦公式化簡sinθ+cosθ=k,由正弦函數(shù)的值域求出k的取值范圍,結(jié)合原來的不等式求出答案.

解答 解:由sinθ+cosθ=k得,sin2θ+2sinθcosθ+cos2θ=k2,
解得sinθcosθ=$\frac{{k}^{2}-1}{2}$,
∴sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθcosθ+cos2θ)
=k(1-$\frac{{k}^{2}-1}{2}$)=$\frac{1}{2}$k(3-k2),
∵sin3θ+cos3θ<0,∴k(3-k2)<0,即k(k2-3)>0,
又k=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),則$k∈[-\sqrt{2},\sqrt{2}]$,
∴k2-3<0,∴k<0,
即k的取值范圍是$[-\sqrt{2},0)$.

點評 本題考查正弦函數(shù)的值域,平方關(guān)系、二倍角的正弦公式,以及立方和公式的應(yīng)用,考查化簡、變形能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓柱的側(cè)面積為100πcm2,且該圓柱內(nèi)接長方體的對角線長為10$\sqrt{2}$cm,則該圓柱的體積為250πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,若該幾何體的各個頂點均在同一個球面上,則該球體的表面積為( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=3$\sqrt{co{s}^{2}x}$-cosx(0≤x≤2π).
(1)畫出函數(shù)f(x)的圖象;
(2)若函數(shù)g(x)=f(x)+2m有且僅有2個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)和向量$\overrightarrow$=(1,f(x)),且$\overrightarrow{a}$∥$\overrightarrow$.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個內(nèi)角分別為A、B、C,若有f(A-$\frac{π}{3}$)=$\sqrt{3}$,sinB=$\frac{\sqrt{21}}{7}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求y=sinx-cosx+sinxcosx,x∈[0,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,平面PDC⊥平面ABCD,AC=AD=PD=PC,∠DAC=90°,M在PB上.
(Ⅰ)若點M是PB的中點,求證:PA⊥平面CDM;
(Ⅱ)在線段PB上確定點M的位置,使得二面角D-MC-B的余弦值為-$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解不等式:(1.25)${\;}^{1-(lo{g}_{2}x)^{2}}$<(0.64)${\;}^{2+lo{g}_{\sqrt{x}}x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.當(dāng)前《奔跑吧兄弟第四季》正在熱播,某校一興趣小組為研究“收看《奔跑吧兄弟第四季》與年齡是否相關(guān)”,在某市步行街隨機抽取了100名成人進行調(diào)查,發(fā)現(xiàn)45歲以下的被調(diào)查對象有40人收看,有15人未收看;45歲及以上的調(diào)查對象中有20人收看,有25人未收看.
(1)在被調(diào)查對象中,收看《奔跑吧兄弟第四季》的人數(shù)占各自年齡段的比例分別是多少?并初步判斷收看《奔跑吧兄弟第四季》與年齡是否有關(guān)?
(2)①試根據(jù)題設(shè)數(shù)據(jù)完成2×2列聯(lián)表:
收看不收看合計
45歲以下
45歲及以下
合計
②判斷是否有99.5%的把握認(rèn)為收看《奔跑吧兄弟第四季》與年齡有關(guān):
附參考公式與數(shù)據(jù):K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.0100.005 0.001
k06.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案