12.函數(shù)y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$,π≤x≤$\frac{3π}{2}$的最大值為1.

分析 由條件利用正弦函數(shù)的定義域和值域求得sinx的范圍,再利用二次函數(shù)的性質(zhì)求得函數(shù)y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$的最大值即可.

解答 解:y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$=1-sin2x-$\sqrt{2}$sinx$-\frac{1}{2}$
=$\frac{1}{2}-si{n}^{2}x-\sqrt{2}sinx$=1-(sinx+$\frac{\sqrt{2}}{2}$)2,在區(qū)間[π,$\frac{3π}{2}$]上,sinx∈[-1,0],
∴當(dāng)sinx=-$\frac{\sqrt{2}}{2}$,即$x=\frac{5π}{4}$時(shí),函數(shù)y取得最大值為1.
故答案為:1.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的定義域和值域,二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,BD=$\sqrt{3}$,
(1)求cos∠BAD的值
(2)求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知隨機(jī)變量X是分布列如表,則E(2X+1)=(  )
 X 1 2
 P 0.3 0.7
A.4.4B.0.6C.0.3D.1.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將函數(shù)f(x)=2cos(x-$\frac{π}{3}$)-1的圖象所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則圖象y=g(x)的一個(gè)對(duì)稱中心為( 。
A.($-\frac{π}{6}$,0)B.($-\frac{π}{12}$,-1)C.($\frac{π}{6}$,-1)D.($\frac{π}{12}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=tan(2x+$\frac{π}{3}$),則下列說(shuō)法正確的是( 。
A.f(x)在定義域是增函數(shù)B.f(x)的對(duì)稱中心是($\frac{kπ}{4}$-$\frac{π}{6}$,0)(k∈Z)
C.f(x)是奇函數(shù)D.f(x)的對(duì)稱軸是x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題正確的是(  )
A.對(duì)?x,y∈R,若x+y≠0,則x≠1且y≠-1
B.設(shè)隨機(jī)變量X~N(1,52),若P(X≤0)=P(X≥a-2),則實(shí)數(shù)a的值為2
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.${∫}_{0}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{4}$+$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.化簡(jiǎn)f(α)=$\frac{sin(α+\frac{π}{2})cos(\frac{3π}{2}-α)tan(π-α)}{tan(α+π)sin(π-α)}$,若tanα=$\frac{1}{3}$,α∈(π,$\frac{3π}{2}$),求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.${∫}_{e}^{a}$$\frac{1}{x}$dx=3,則a=( 。
A.$\frac{1}{2}$e2B.e4C.e3D.e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

若集合,,則( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案